1,061 research outputs found
On the decay of deformed actinide nuclei
decay through a deformed potential barrier produces significant
mixing of angular momenta when mapped from the nuclear interior to the outside.
Using experimental branching ratios and either semi-classical or
coupled-channels transmission matrices, we have found that there is a set of
internal amplitudes which are essentially constant for all even--even actinide
nuclei. These same amplitudes also give good results for the known anisotropic
particle emission of the favored decays of odd nuclei in the same mass
region.
PACS numbers: 23.60.+e, 24.10.Eq, 27.90.+bComment: 5 pages, latex (revtex style), 2 embedded postscript figures
uuencoded gz-compressed .tar file To appear in Physical Review Letter
Macroscopic superpositions via nested interferometry: finite temperature and decoherence considerations
Recently there has been much interest in optomechanical devices for the
production of macroscopic quantum states. Here we focus on a proposed scheme
for achieving macroscopic superpositions via nested interferometry. We consider
the effects of finite temperature on the superposition produced. We also
investigate in detail the scheme's feasibility for probing various novel
decoherence mechanisms.Comment: 12 pages, 2 figure
A hierarchical research by large-scale and ab initio electronic structure theories -- Si and Ge cleavage and stepped (111)-2x1 surfaces --
The ab initio calculation with the density functional theory and plane-wave
bases is carried out for stepped Si(111)-2x1 surfaces that were predicted in a
cleavage simulation by the large-scale (order-N) electronic structure theory
(T. Hoshi, Y. Iguchi and T. Fujiwara, Phys. Rev. B72 (2005) 075323). The
present ab initio calculation confirms the predicted stepped structure and its
bias-dependent STM image. Moreover, two (meta)stable step-edge structures are
found and compared. The investigation is carried out also for Ge(111)-2x1
surfaces, so as to construct a common understanding among elements. The present
study demonstrates the general importance of the hierarchical research between
large-scale and ab initio electronic structure theories.Comment: 5 pages, 4 figures, to appear in Physica
Aesthetics and literature : a problematic relation?
The paper argues that there is a proper place for literature within aesthetics but that care must be taken in identifying just what the relation is. In characterising aesthetic pleasure associated with literature it is all too easy to fall into reductive accounts, for example, of literature as merely "fine writing". Belleslettrist or formalistic accounts of literature are rejected, as are two other kinds of reduction, to pure meaning properties and to a kind of narrative realism. The idea is developed that literature-both poetry and prose fiction-invites its own distinctive kind of aesthetic appreciation which far from being at odds with critical practice, in fact chimes well with it
Levinson's Theorem for Non-local Interactions in Two Dimensions
In the light of the Sturm-Liouville theorem, the Levinson theorem for the
Schr\"{o}dinger equation with both local and non-local cylindrically symmetric
potentials is studied. It is proved that the two-dimensional Levinson theorem
holds for the case with both local and non-local cylindrically symmetric cutoff
potentials, which is not necessarily separable. In addition, the problems
related to the positive-energy bound states and the physically redundant state
are also discussed in this paper.Comment: Latex 11 pages, no figure, submitted to J. Phys. A Email:
[email protected], [email protected]
Modeling the initiation of others into injection drug use, using data from 2,500 injectors surveyed in Scotland during 2008-2009
The prevalence of injection drug use has been of especial interest for assessment of the impact of blood-borne viruses. However, the incidence of injection drug use has been underresearched. Our 2-fold aim in this study was to estimate 1) how many other persons, per annum, an injection drug user (IDU) has the equivalent of full responsibility (EFR) for initiating into injection drug use and 2) the consequences for IDUs' replacement rate. EFR initiation rates are strongly associated with incarceration history, so that our analysis of IDUs' replacement rate must incorporate when, in their injecting career, IDUs were first incarcerated. To do so, we have first to estimate piecewise constant incarceration rates in conjunction with EFR initiation rates, which are then combined with rates of cessation from injecting to model IDUs' replacement rate over their injecting career, analogous to the reproduction number of an epidemic model. We apply our approach to Scotland's IDUs, using over 2,500 anonymous injector participants who were interviewed in Scotland's Needle Exchange Surveillance Initiative during 2008-2009. Our approach was made possible by the inclusion of key questions about initiations. Finally, we extend our model to include an immediate quit rate, as a reasoned compensation for higher-than-expected replacement rates, and we estimate how high initiates' quit rate should be for IDUs' replacement rate to be 1
Correlation Between the Deuteron Characteristics and the Low-energy Triplet np Scattering Parameters
The correlation relationship between the deuteron asymptotic normalization
constant, , and the triplet np scattering length, , is
investigated. It is found that 99.7% of the asymptotic constant is
determined by the scattering length . It is shown that the linear
correlation relationship between the quantities and
provides a good test of correctness of various models of nucleon-nucleon
interaction. It is revealed that, for the normalization constant and
for the root-mean-square deuteron radius , the results obtained with the
experimental value recommended at present for the triplet scattering length
are exaggerated with respect to their experimental counterparts. By
using the latest experimental phase shifts of Arndt et al., we obtain, for the
low-energy scattering parameters (, , ) and for the
deuteron characteristics (, ), results that comply well with
experimental data.Comment: 19 pages, 1 figure, To be published in Physics of Atomic Nucle
Modeling the Cumulative Genetic Risk for Multiple Sclerosis from Genome-Wide Association Data
Background: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. Methods: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. Results: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). Conclusions: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics.Version of Recor
Narrative and Interpretation on Twitter: Reading tweets by telling stories
Existing research on communication on Twitter has largely ignored the question of how users make sense of the fragmentary tweets with which they are presented. Focusing on the use of Twitter for political reporting in post-revolutionary Egypt, this article argues that the production of mental stories provides readers with a mechanism for interpreting the meaning of individual tweets in terms of their relationships to other material. Drawing on contemporary narratology, it argues that Twitter exhibits key elements of narrativity, but that a creative reading process is nonetheless required to transform this incipient narrativity into coherent, sense-making mental narratives. This foregrounding of the reader’s creative role makes stories on Twitter highly fluid and dynamic. Through reference to classic critical theory, I propose that this nonetheless represents an evolution rather than a radical break from earlier forms of narrative reception, which in many cases demanded similarly creative reading practices
Use of dynamic contrast-enhanced MRI to measure subtle blood-brain barrier abnormalities
There is growing interest in investigating the role of subtle changes in blood–brain barrier (BBB) function in common neurological disorders and the possible use of imaging techniques to assess these abnormalities. Some studies have used dynamic contrast-enhanced MR imaging (DCE-MRI) and these have demonstrated much smaller signal changes than obtained from more traditional applications of the technique, such as in intracranial tumors and multiple sclerosis. In this work, preliminary results are presented from a DCE-MRI study of patients with mild stroke classified according to the extent of visible underlying white matter abnormalities. These data are used to estimate typical signal enhancement profiles in different tissue types and by degrees of white matter abnormality. The effect of scanner noise, drift and different intrinsic tissue properties on signal enhancement data is also investigated and the likely implications for interpreting the enhancement profiles are discussed. No significant differences in average signal enhancement or contrast agent concentration were observed between patients with different degrees of white matter abnormality, although there was a trend towards greater signal enhancement with more abnormal white matter. Furthermore, the results suggest that many of the factors considered introduce uncertainty of a similar magnitude to expected effect sizes, making it unclear whether differences in signal enhancement are truly reflective of an underlying BBB abnormality or due to an unrelated effect. As the ultimate aim is to achieve a reliable quantification of BBB function in subtle disorders, this study highlights the factors which may influence signal enhancement and suggests that further work is required to address the challenging problems of quantifying contrast agent concentration in healthy and diseased living human tissue and of establishing a suitable model to enable quantification of relevant physiological parameters. Meanwhile, it is essential that future studies use an appropriate control group to minimize these influences
- …
