1,144 research outputs found

    Stratified Labelings for Abstract Argumentation

    Full text link
    We introduce stratified labelings as a novel semantical approach to abstract argumentation frameworks. Compared to standard labelings, stratified labelings provide a more fine-grained assessment of the controversiality of arguments using ranks instead of the usual labels in, out, and undecided. We relate the framework of stratified labelings to conditional logic and, in particular, to the System Z ranking functions

    Quantum Engineering of Spin and Anisotropy in Magnetic Molecular Junctions

    Full text link
    Single molecule magnets and single spin centers can be individually addressed when coupled to contacts forming an electrical junction. In order to control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin center. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin when coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride (h-BN) monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While the hydrogen atoms control the total effective spin, the corrugation is found to smoothly tune the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunneling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy

    Potential Energy Driven Spin Manipulation via a Controllable Hydrogen Ligand

    Get PDF
    Spin-bearing molecules can be stabilized on surfaces and in junctions with desirable properties such as a net spin that can be adjusted by external stimuli. Using scanning probes, initial and final spin states can be deduced from topographic or spectroscopic data, but how the system transitioned between these states is largely unknown. Here we address this question by manipulating the total spin of magnetic cobalt hydride complexes on a corrugated boron nitride surface with a hydrogen- functionalized scanning probe tip by simultaneously tracking force and conductance. When the additional hydrogen ligand is brought close to the cobalt monohydride, switching between a corre- lated S = 1 /2 Kondo state, where host electrons screen the magnetic moment, and a S = 1 state with magnetocrystalline anisotropy is observed. We show that the total spin changes when the system is transferred onto a new potential energy surface defined by the position of the hydrogen in the junction. These results show how and why chemically functionalized tips are an effective tool to manipulate adatoms and molecules, and a promising new method to selectively tune spin systems

    Vaspin inhibits kallikrein 7 by serpin mechanism

    Get PDF
    The molecular target of the adipokine vaspin (visceral adipose tissue-derived serpin; serpinA12) and its mode of action are unknown. Here, we provide the vaspin crystal structure and identify human kallikrein 7 (hK7) as a first protease target of vaspin inhibited by classical serpin mechanism with high specificity in vitro. We detect vaspin–hK7 complexes in human plasma and find co-expression of both proteins in murine pancreatic β-cells. We further demonstrate that hK7 cleaves human insulin in the A- and B-chain. Vaspin treatment of isolated pancreatic islets leads to increased insulin concentration in the media upon glucose stimulation without influencing insulin secretion. By application of vaspin and generated inactive mutants, we find the significantly improved glucose tolerance in C57BL/6NTac and db/db mice treated with recombinant vaspin fully dependent on the vaspin serpin activity and not related to vaspin-mediated changes in insulin sensitivity as determined by euglycemic-hyperinsulinemic clamp studies. Improved glucose metabolism could be mediated by increased insulin plasma concentrations 150 min after a glucose challenge in db/db mice, supporting the hypothesis that vaspin may inhibit insulin degradation by hK7 in the circulation. In conclusion, we demonstrate the inhibitory serpin nature and the first protease target of the adipose tissue-derived serpin vaspin, and our findings suggest hK7 inhibition by vaspin as an underlying physiological mechanism for its compensatory actions on obesity-induced insulin resistance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00018-013-1258-8) contains supplementary material, which is available to authorized users

    Modeling of variant copies of subunit D1 in the structure of photosystem II from Thermosynechococcus elongatus

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.In the cyanobacterium Thermosynechococcus elongatus BP-1, living in hot springs, the light environment directly regulates expression of genes that encode key components of the photosynthetic multi-subunit protein-pigment complex photosystem II (PSII). Light is not only essential as an energy source to power photosynthesis, but leads to formation of aggressive radicals which induce severe damage of protein subunits and organic cofactors. Photosynthetic organisms develop several protection mechanisms against this photo-damage, such as the differential expression of genes coding for the reaction center subunit D1 in PSII. Testing the expression of the three different genes (psbAI, psbAII, psbAIII) coding for D1 in T. elongatus under culture conditions used for preparing the material used in crystallization of PSII showed that under these conditions only subunit PsbA1 is present. However, exposure to high-light intensity induced partial replacement of PsbA1 with PsbA3. Modeling of the variant amino acids of the three different D1 copies in the 3.0 Å resolution crystal structure of PSII revealed that most of them are in the direct vicinity to redox-active cofactors of the electron transfer chain. Possible structural and mechanistic consequences for electron transfer are discussed.DFG, SFB 498, Protein-Kofaktor-Wechselwirkungen in biologischen ProzessenEC/FP6/516510/EU/Linking molecular genetics and bio-mimetic chemistry - a multidisciplinary approach to achieve renewable hydrogen production/SOLAR-

    Робоча програма навчальної дисципліни «Управління інноваційними проектами місцевого та регіонального розвитку» для магістрів спеціальності 281 Публічне управління та адміністрування

    Get PDF
    Робоча програма призначена для реалізації компетентнісного підходу під час планування освітнього процесу, викладання дисципліни, підготовки студентів до контрольних заходів, контролю провадження освітньої діяльності, внутрішнього та зовнішнього контролю забезпечення якості вищої освіти, акредитації освітніх програм у межах спеціальност

    Mitochondrial DNA Content in Human Omental Adipose Tissue

    Get PDF
    Background: Impairment of mitochondrial function plays an important role in obesity and the development of insulin resistance. The aim of this project was to investigate the mitochondrial DNA copy number in human omental adipose tissue with respect to obesity. Methods: The mitochondrial DNA (mtDNA) content per single adipocyte derived from abdominal omental adipose tissue was determined by quantitative RT-PCR in a group of 75 patients, consisting of obese and morbidly obese subjects, as well as non-obese controls. Additionally, basal metabolic rate and fat oxidation rate were recorded and expressed as total values or per kilogram fat mass. Results: MtDNA content is associated with obesity. Higher body mass index (BMI) resulted in a significantly elevated mtDNA count (ratio = 1.56; p = 0.0331) comparing non-obese (BMI < 30) to obese volunteers (BMI ≥ 30). The mtDNA count per cell was not correlated with age or gender. Diabetic patients showed a trend toward reduced mtDNA content. A seasonal change in mtDNA copy number could not be identified. In addition, a substudy investigating the basal metabolic rate and the fasting fat oxidation did not reveal any associations to the mtDNA count. Conclusions: The mtDNA content per cell of omental adipose tissue did not correlate with various clinical parameters but tended to be reduced in patients with diabetes, which may partly explain the impairment of mitochondrial function observed in insulin resistance. Furthermore, the mtDNA content was significantly increased in patients suffering from obesity (BMI above 30). This might reflect a compensatory response to the development of obesity, which is associated with impairment of mitochondrial functio
    corecore