1,990 research outputs found

    A New Look At Neutrino Limits From Big Bang Nucleosynthesis

    Full text link
    We take a fresh look at the limits on the number of neutrino flavors derived from big bang nucleosynthesis. In particular, recent measurements of the \he4 abundance enable one to estimate the primordial \he4 mass fraction at Yp=0.232±.003(stat)±.005(syst)Y_p = 0.232 \pm .003(stat) \pm .005(syst). For a baryon to photon ratio, η\eta, consistent with the other light elements, this leads to a best fit for the number of neutrino flavors Nν<3N_\nu < 3 (the precise number depends on η\eta) indicating a very strong upper limit to NνN_\nu. Here, we derive new upper limits on NνN_\nu, paying special attention to the fact that the best estimate may lie in an unphysical region (Nν<3N_\nu < 3 if all three neutrino flavors are light or massless; the lower bound to NνN_\nu may even be as low as 2, if the small window for a ντ\nu_\tau mass is exploited.) Our resulting upper limits therefore depend on whether Nν2N_\nu \ge 2 or 3 is assumed. We also explore the sensitivity of our results to the adopted value of η\eta and the assumed systematic errors in YpY_p.Comment: 11 pages, latex, four uuencoded ps figures include

    Model Independent Predictions of Big Bang Nucleosynthesis from \he4 and \li7: Consistency and Implications

    Get PDF
    We examine in detail how BBN theory is constrained, and what predictions it can make, when using only the most model-independent observational constraints. We avoid the uncertainties and model-dependencies that necessarily arise when solar neighborhood D and \he3 abundances are used to infer primordial D and \he3 via chemical and stellar evolution models. Instead, we use \he4 and \li7, thoroughly examining the effects of possible systematic errors in each. Via a likelihood analysis, we find near perfect agreement between BBN theory and the most model-independent data. Given this agreement, we then {\it assume} the correctness of BBN to set limits on the single parameter of standard BBN, the baryon-to-photon ratio, and to predict the primordial D and \he3 abundances. We also repeat our analysis including recent measurements of D/H from quasar absorption systems and find that the near perfect agreement between theory and observation of the three isotopes, D, \he4 and \li7 is maintained. These results have strong implications for the chemical and stellar evolution of the light elements, in particular for \he3. In addition, our results (especially if the D/H measurements are confirmed) have implications for the stellar depletion of \li7. Finally, we set limits on the number \nnu\ of neutrino flavors, using an analysis which carefully and systematically includes all available experimental constraints. The value \nnu = 3.0 fits best with BBN and a 95\% CL upper limit of \nnu \la 4 is established.Comment: 28 pages, latex, 10 ps figure

    Magnetic fields in the early universe in the string approach to MHD

    Get PDF
    There is a reformulation of magnetohydrodynamics in which the fundamental dynamical quantities are the positions and velocities of the lines of magnetic flux in the plasma, which turn out to obey equations of motion very much like ideal strings. We use this approach to study the evolution of a primordial magnetic field generated during the radiation-dominated era in the early Universe. Causality dictates that the field lines form a tangled random network, and the string-like equations of motion, plus the assumption of perfect reconnection, inevitably lead to a self-similar solution for the magnetic field power spectrum. We present the predicted form of the power spectrum, and discuss insights gained from the string approximation, in particular the implications for the existence or not of an inverse cascade.Comment: 12 pages, 2 figure

    Spin-Flavour Oscillations and Neutrinos from SN1987A

    Get PDF
    The neutrino signal from SN1987A is analysed with respect to spin-flavour oscillations between electron antineutrinos, νˉe\bar{\nu}_{e}, and muon neutrinos, νμ\nu_{\mu}, by means of a maximum likelihood analysis. Following Jegerlehner et al. best fit values for the total energy released in neutrinos, EtE_t, and the temperature of the electron antineutrino, TνˉeT_{\bar{\nu}_{e}}, for a range of mixing parameters and progenitor models are calculated. In particular the dependence of the inferred quantities on the metallicity of the supernova is investigated and the uncertainties involved in using the neutrino signal to determine the neutrino magnetic moment are pointed out.Comment: 14 pages, RevTeX, 4 figures, to appear in Physical Review

    The Age Of Globular Clusters In Light Of Hipparcos: Resolving the Age Problem?

    Get PDF
    We review five independent techniques which are used to set the distance scale to globular clusters, including subdwarf main sequence fitting utilizing the recent Hipparcos parallax catalogue. These data together all indicate that globular clusters are farther away than previously believed, implying a reduction in age estimates. This new distance scale estimate is combined with a detailed numerical Monte Carlo study designed to assess the uncertainty associated with the theoretical age-turnoff luminosity relationship in order to estimate both the absolute age and uncertainty in age of the oldest globular clusters. Our best estimate for the mean age of the oldest globular clusters is now 11.5±1.311.5\pm 1.3 Gyr, with a one-sided, 95% confidence level lower limit of 9.5 Gyr. This represents a systematic shift of over 2 σ\sigma compared to our earlier estimate, due completely to the new distance scale---which we emphasize is not just due to the Hipparcos data. This now provides a lower limit on the age of the universe which is consistent with either an open universe, or a flat, matter dominated universe (the latter requiring H_0 \le 67 \kmsmpc). Our new study also explicitly quantifies how remaining uncertainties in the distance scale and stellar evolution models translate into uncertainties in the derived globular cluster ages. Simple formulae are provided which can be used to update our age estimate as improved determinations for various quantities become available.Comment: 41 pages, including 10 eps figs, uses aaspp4.sty and flushrt.sty, submitted to Ap.J., revised to incorporate FULL Hipparcos catalogue dat
    corecore