4,847 research outputs found
A Precise Distance to IRAS 00420+5530 via H2O Maser Parallax with the VLBA
We have used the VLBA to measure the annual parallax of the H2O masers in the
star-forming region IRAS 00420+5530. This measurement yields a direct distance
estimate of 2.17 +/- 0.05 kpc (<3%), which disagrees substantially with the
standard kinematic distance estimate of ~4.6 kpc (according to the rotation
curve of Brand and Blitz 1993), as well as most of the broad range of distances
(1.7-7.7 kpc) used in various astrophysical analyses in the literature. The
3-dimensional space velocity of IRAS 00420+5530 at this new, more accurate
distance implies a substantial non-circular and anomalously slow Galactic
orbit, consistent with similar observations of W3(OH) (Xu et al., 2006;
Hachisuka et al. 2006), as well as line-of-sight velocity residuals in the
rotation curve analysis of Brand and Blitz (1993). The Perseus spiral arm of
the Galaxy is thus more than a factor of two closer than previously presumed,
and exhibits motions substantially at odds with axisymmetric models of the
rotating Galaxy.Comment: 33 pages, 12 figures; Accepted by ApJ (to appear March 2009
A best online algorithm for scheduling on two parallel batch machines
AbstractWe consider the online scheduling on two parallel batch machines with infinite batch size to minimize makespan, where jobs arrive over time. That is, all information of a job is not available until it is released. For this online scheduling problem, Nong et al. [Q.Q. Nong, T.C.E. Cheng, C.T. Ng, An improved online algorithm for scheduling on two unrestrictive parallel batch processing machines, Operations Research Letters, 36 (2008) 584–588] have provided an online algorithm with competitive ratio no greater than 2. We show that this bound is tight for the problem. Furthermore we give a new best possible online algorithm with a tighter structure
Sociobiological Control of Plasmid copy number
Background:
All known mechanisms and genes responsible for the regulation of plasmid replication lie with the plasmid rather than the chromosome. It is possible therefore that there can be copy-up mutants. Copy-up mutants will have within host selective advantage. This would eventually result into instability of bacteria-plasmid association. In spite of this possibility low copy number plasmids appear to exist stably in host populations. We examined this paradox using a computer simulation model.

Model:
Our multilevel selection model assumes a wild type with tightly regulated replication to ensure low copy number. A mutant with slightly relaxed replication regulation can act as a “cheater” or “selfish” plasmid and can enjoy a greater within-host-fitness. However the host of a cheater plasmid has to pay a greater cost. As a result, in host level competition, host cell with low copy number plasmid has a greater fitness. Furthermore, another mutant that has lost the genes required for conjugation was introduced in the model. The non-conjugal mutant was assumed to undergo conjugal transfer in the presence of another conjugal plasmid in the host cell.

Results:
The simulatons showed that if the cost of carrying a plasmid was low, the copy-up mutant could drive the wild type to extinction or very low frequencies. Consequently, another mutant with a higher copy number could invade the first invader. This process could result into an increasing copy number. However above a certain copy number within-host selection was overcompensated by host level selection leading to a rock-paper-scissor (RPS) like situation. The RPS situation allowed the coexistence of high and low copy number plasmids. The non-conjugal “hypercheaters” could further arrest the copy numbers to a substantially lower level.

Conclusions:
These sociobiological interactions might explain the stability of copy numbers better than molecular mechanisms of replication regulation alone
The effect of distance on reaction time in aiming movements
Target distance affects movement duration in aiming tasks but its effect on reaction time (RT) is poorly documented. RT is a function of both preparation and initiation. Experiment 1 pre-cued movement (allowing advanced preparation) and found no influence of distance on RT. Thus, target distance does not affect initiation time. Experiment 2 removed pre-cue information and found that preparing a movement of increased distance lengthens RT. Experiment 3 explored movements to targets of cued size at non-cued distances and found size altered peak speed and movement duration but RT was influenced by distance alone. Thus, amplitude influences preparation time (for reasons other than altered duration) but not initiation time. We hypothesise that the RT distance effect might be due to the increased number of possible trajectories associated with further targets: a hypothesis that can be tested in future experiments
On Convergence and Threshold Properties of Discrete Lotka-Volterra Population Protocols
In this work we focus on a natural class of population protocols whose
dynamics are modelled by the discrete version of Lotka-Volterra equations. In
such protocols, when an agent of type (species) interacts with an agent
of type (species) with as the initiator, then 's type becomes
with probability . In such an interaction, we think of as the
predator, as the prey, and the type of the prey is either converted to that
of the predator or stays as is. Such protocols capture the dynamics of some
opinion spreading models and generalize the well-known Rock-Paper-Scissors
discrete dynamics. We consider the pairwise interactions among agents that are
scheduled uniformly at random. We start by considering the convergence time and
show that any Lotka-Volterra-type protocol on an -agent population converges
to some absorbing state in time polynomial in , w.h.p., when any pair of
agents is allowed to interact. By contrast, when the interaction graph is a
star, even the Rock-Paper-Scissors protocol requires exponential time to
converge. We then study threshold effects exhibited by Lotka-Volterra-type
protocols with 3 and more species under interactions between any pair of
agents. We start by presenting a simple 4-type protocol in which the
probability difference of reaching the two possible absorbing states is
strongly amplified by the ratio of the initial populations of the two other
types, which are transient, but "control" convergence. We then prove that the
Rock-Paper-Scissors protocol reaches each of its three possible absorbing
states with almost equal probability, starting from any configuration
satisfying some sub-linear lower bound on the initial size of each species.
That is, Rock-Paper-Scissors is a realization of a "coin-flip consensus" in a
distributed system. Some of our techniques may be of independent value
Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games
Biodiversity is essential to the viability of ecological systems. Species
diversity in ecosystems is promoted by cyclic, non-hierarchical interactions
among competing populations. Such non-transitive relations lead to an evolution
with central features represented by the `rock-paper-scissors' game, where rock
crushes scissors, scissors cut paper, and paper wraps rock. In combination with
spatial dispersal of static populations, this type of competition results in
the stable coexistence of all species and the long-term maintenance of
biodiversity. However, population mobility is a central feature of real
ecosystems: animals migrate, bacteria run and tumble. Here, we observe a
critical influence of mobility on species diversity. When mobility exceeds a
certain value, biodiversity is jeopardized and lost. In contrast, below this
critical threshold all subpopulations coexist and an entanglement of travelling
spiral waves forms in the course of temporal evolution. We establish that this
phenomenon is robust, it does not depend on the details of cyclic competition
or spatial environment. These findings have important implications for
maintenance and evolution of ecological systems and are relevant for the
formation and propagation of patterns in excitable media, such as chemical
kinetics or epidemic outbreaks.Comment: Final submitted version; the printed version can be found at
http://dx.doi.org/10.1038/nature06095 Supplementary movies are available at
http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie1.AVI
and
http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie2.AV
Using honey to heal diabetic foot ulcers
Diabetic ulcers seem to be arrested in the inflammatory/proliferative stage of the healing process, allowing infection and inflammation to preclude healing. Antibiotic-resistant bacteria have become a major cause of infections, including diabetic foot infections. It is proposed here that the modern developments of an ancient and traditional treatment for wounds, dressing them with honey, provide the solution to the problem of getting diabetic ulcers to move on from the arrested state of healing. Honeys selected to have a high level of antibacterial activity have been shown to be very effective against antibiotic-resistant strains of bacteria in laboratory and clinical studies. The potent anti-inflammatory action of honey is also likely to play an important part in overcoming the impediment to healing that inflammation causes in diabetic ulcers, as is the antioxidant activity of honey. The action of honey in promotion of tissue regeneration through stimulation of angiogenesis and the growth of fibroblasts and epithelial cells, and its insulin-mimetic effect, would also be of benefit in stimulating the healing of diabetic ulcers. The availability of honey-impregnated dressings which conveniently hold honey in place on ulcers has provided a means of rapidly debriding ulcers and removing the bacterial burden so that good healing rates can be achieved with neuropathic ulcers. With ischemic ulcers, where healing cannot occur because of lack of tissue viability, these honey dressings keep the ulcers clean and prevent infection occurring
Altruism can proliferate through group/kin selection despite high random gene flow
The ways in which natural selection can allow the proliferation of
cooperative behavior have long been seen as a central problem in evolutionary
biology. Most of the literature has focused on interactions between pairs of
individuals and on linear public goods games. This emphasis led to the
conclusion that even modest levels of migration would pose a serious problem to
the spread of altruism in group structured populations. Here we challenge this
conclusion, by analyzing evolution in a framework which allows for complex
group interactions and random migration among groups. We conclude that
contingent forms of strong altruism can spread when rare under realistic group
sizes and levels of migration. Our analysis combines group-centric and
gene-centric perspectives, allows for arbitrary strength of selection, and
leads to extensions of Hamilton's rule for the spread of altruistic alleles,
applicable under broad conditions.Comment: 5 pages, 2 figures. Supplementary material with 50 pages and 26
figure
The Nuts and Bolts of Einstein-Maxwell Solutions
We find new non-supersymmetric solutions of five-dimensional ungauged
supergravity coupled to two vector multiplets. The solutions are regular,
horizonless and have the same asymptotic charges as non-extremal charged black
holes. An essential ingredient in our construction is a four-dimensional
Euclidean base which is a solution to Einstein-Maxwell equations. We construct
stationary solutions based on the Euclidean dyonic Reissner-Nordstrom black
hole as well as a six-parameter family with a dyonic Kerr-Newman-NUT base.
These solutions can be viewed as compactifications of eleven-dimensional
supergravity on a six-torus and we discuss their brane interpretation.Comment: 29 pages, 3 figure
Stellar Disks in Aquarius Dark Matter Haloes
We investigate the gravitational interactions between live stellar disks and
their dark matter halos, using LCDM haloes similar in mass to that of the Milky
Way taken from the Aquarius Project. We introduce the stellar disks by first
allowing the haloes to respond to the influence of a growing rigid disk
potential from z = 1.3 to z = 1.0. The rigid potential is then replaced with
star particles which evolve self-consistently with the dark matter particles
until z = 0.0. Regardless of the initial orientation of the disk, the inner
parts of the haloes contract and change from prolate to oblate as the disk
grows to its full size. When the disk normal is initially aligned with the
major axis of the halo at z=1.3, the length of the major axis contracts and
becomes the minor axis by z=1.0. Six out of the eight disks in our main set of
simulations form bars, and five of the six bars experience a buckling
instability that results in a sudden jump in the vertical stellar velocity
dispersion and an accompanying drop in the m=2 Fourier amplitude of the disk
surface density. The bars are not destroyed by the buckling but continue to
grow until the present day. Bars are largely absent when the disk mass is
reduced by a factor of two or more; the relative disk-to-halo mass is therefore
a primary factor in bar formation and evolution. A subset of the disks is
warped at the outskirts and contains prominent non-coplanar material with a
ring-like structure. Many disks reorient by large angles between z=1 and z=0,
following a coherent reorientation of their inner haloes. Larger reorientations
produce more strongly warped disks, suggesting a tight link between the two
phenomena. The origins of bars and warps appear independent: some disks with
strong bars show no disturbances at the outskirts, while the disks with the
weakest bars show severe warps.Comment: 19 pages, 13 figures, accepted MNRAS; fixed compatibility problem in
figures 8,
- …
