765 research outputs found

    Towards Trace Metrics via Functor Lifting

    Get PDF
    We investigate the possibility of deriving metric trace semantics in a coalgebraic framework. First, we generalize a technique for systematically lifting functors from the category Set of sets to the category PMet of pseudometric spaces, showing under which conditions also natural transformations, monads and distributive laws can be lifted. By exploiting some recent work on an abstract determinization, these results enable the derivation of trace metrics starting from coalgebras in Set. More precisely, for a coalgebra on Set we determinize it, thus obtaining a coalgebra in the Eilenberg-Moore category of a monad. When the monad can be lifted to PMet, we can equip the final coalgebra with a behavioral distance. The trace distance between two states of the original coalgebra is the distance between their images in the determinized coalgebra through the unit of the monad. We show how our framework applies to nondeterministic automata and probabilistic automata

    Coalgebraic Trace Semantics for Continuous Probabilistic Transition Systems

    Full text link
    Coalgebras in a Kleisli category yield a generic definition of trace semantics for various types of labelled transition systems. In this paper we apply this generic theory to generative probabilistic transition systems, short PTS, with arbitrary (possibly uncountable) state spaces. We consider the sub-probability monad and the probability monad (Giry monad) on the category of measurable spaces and measurable functions. Our main contribution is that the existence of a final coalgebra in the Kleisli category of these monads is closely connected to the measure-theoretic extension theorem for sigma-finite pre-measures. In fact, we obtain a practical definition of the trace measure for both finite and infinite traces of PTS that subsumes a well-known result for discrete probabilistic transition systems. Finally we consider two example systems with uncountable state spaces and apply our theory to calculate their trace measures

    Brotherhood of Breath : Ronnie Scott's Sun

    Get PDF
    Photocopied article from Time Out London about the origins, the evolution and the musical influences of Brotherhood of Breath

    Coalgebraic Behavioral Metrics

    Get PDF
    We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra α ⁣:XHX\alpha\colon X \to HX for a functor H ⁣:SetSetH \colon \mathrm{Set}\to \mathrm{Set}, we define a framework for deriving pseudometrics on XX which measure the behavioral distance of states. A crucial step is the lifting of the functor HH on Set\mathrm{Set} to a functor H\overline{H} on the category PMet\mathrm{PMet} of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If HH has a final coalgebra, every lifting H\overline{H} yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction

    On Fluxed Instantons and Moduli Stabilisation in IIB Orientifolds and F-theory

    Get PDF
    We study the superpotential induced by Euclidean D3-brane instantons carrying instanton flux, with special emphasis on its significance for the stabilisation of Kahler moduli and Neveu-Schwarz axions in Type IIB orientifolds. Quite generally, once a chiral observable sector is included in the compactification, arising on intersecting D7-branes with world-volume flux, resulting charged instanton zero modes prevent a class of instantons from participating in moduli stabilisation. We show that instanton flux on Euclidean D3-branes can remove these extra zero modes and helps in reinstating full moduli stabilisation within a geometric regime. We comment also on the F-theoretic description of this effect of alleviating the general tension between moduli stabilisation and chirality. In addition we propose an alternative solution to this problem based on dressing the instantons with charged matter fields which is unique to F-theory and cannot be realised in the weak coupling limit.Comment: 9 pages in 2-column format; v2: refs adde

    Behavioral Metrics via Functor Lifting

    Get PDF
    We study behavioral metrics in an abstract coalgebraic setting. Given a coalgebra alpha : X -> FX in Set, where the functor F specifies the branching type, we define a framework for deriving pseudometrics on X which measure the behavioral distance of states. A first crucial step is the lifting of the functor F on Set to a functor /F in the category PMet of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. Then a final coalgebra for F in Set can be endowed with a behavioral distance resulting as the smallest solution of a fixed-point equation, yielding the final /F-coalgebra in PMet. The same technique, applied to an arbitrary coalgebra alpha : X -> FX in Set, provides the behavioral distance on X. Under some constraints we can prove that two states are at distance 0 if and only if they are behaviorally equivalent
    corecore