1,463 research outputs found
Erie County Sewer Division and Sewer Districts
Each district is a self-supporting entity with the power to assess fees and levy local charges. New York state law gives nearly complete autonomy to the county to run their agencies. The specific agencies are empowered to assemble data relating to the water resources available in the county, number and location of wells, contaminants that are present in the supply of the water in the county, sewage collection and related issues that may arise. Erie County has made the decision to create separate boards which then report back to the county. Each of the seven districts has its own board, and the board has to report back to the county executive and legislature. The Division of Sewer is a part of the Department of Environment and Planning of Erie County
Scaling of Huygens-front speedup in weakly random media
Front propagation described by Huygens' principle is a fundamental mechanism
of spatial spreading of a property or an effect, occurring in optics,
acoustics, ecology and combustion. If the local front speed varies randomly due
to inhomogeneity or motion of the medium (as in turbulent premixed combustion),
then the front wrinkles and its overall passage rate (turbulent burning
velocity) increases. The calculation of this speedup is subtle because it
involves the minimum-time propagation trajectory. Here we show mathematically
that for a medium with weak isotropic random fluctuations, under mild
conditions on its spatial structure, the speedup scales with the 4/3 power of
the fluctuation amplitude. This result, which verifies a previous conjecture
while clarifying its scope, is obtained by reducing the propagation problem to
the inviscid Burgers equation with white-in-time forcing. Consequently,
field-theoretic analyses of the Burgers equation have significant implications
for fronts in random media, even beyond the weak-fluctuation limit.Comment: 7 pages, 3 figures, elsart5p. v2: additional discussion of
Hamiltonian formalism; v3: clarification of transient behavio
Front Propagation and Diffusion in the A <--> A + A Hard-core Reaction on a Chain
We study front propagation and diffusion in the reaction-diffusion system A
A + A on a lattice. On each lattice site at most one A
particle is allowed at any time. In this paper, we analyze the problem in the
full range of parameter space, keeping the discrete nature of the lattice and
the particles intact. Our analysis of the stochastic dynamics of the foremost
occupied lattice site yields simple expressions for the front speed and the
front diffusion coefficient which are in excellent agreement with simulation
results.Comment: 5 pages, 5 figures, to appear in Phys. Rev.
Emergence of pulled fronts in fermionic microscopic particle models
We study the emergence and dynamics of pulled fronts described by the
Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation in the microscopic
reaction-diffusion process A + A A$ on the lattice when only a particle is
allowed per site. To this end we identify the parameter that controls the
strength of internal fluctuations in this model, namely, the number of
particles per correlated volume. When internal fluctuations are suppressed, we
explictly see the matching between the deterministic FKPP description and the
microscopic particle model.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. E as a
Rapid Communicatio
Fronts in randomly advected and heterogeneous media and nonuniversality of Burgers turbulence: Theory and numerics
A recently established mathematical equivalence--between weakly perturbed
Huygens fronts (e.g., flames in weak turbulence or geometrical-optics wave
fronts in slightly nonuniform media) and the inviscid limit of
white-noise-driven Burgers turbulence--motivates theoretical and numerical
estimates of Burgers-turbulence properties for specific types of white-in-time
forcing. Existing mathematical relations between Burgers turbulence and the
statistical mechanics of directed polymers, allowing use of the replica method,
are exploited to obtain systematic upper bounds on the Burgers energy density,
corresponding to the ground-state binding energy of the directed polymer and
the speedup of the Huygens front. The results are complementary to previous
studies of both Burgers turbulence and directed polymers, which have focused on
universal scaling properties instead of forcing-dependent parameters. The
upper-bound formula can be heuristically understood in terms of renormalization
of a different kind from that previously used in combustion models, and also
shows that the burning velocity of an idealized turbulent flame does not
diverge with increasing Reynolds number at fixed turbulence intensity, a
conclusion that applies even to strong turbulence. Numerical simulations of the
one-dimensional inviscid Burgers equation using a Lagrangian finite-element
method confirm that the theoretical upper bounds are sharp within about 15% for
various forcing spectra (corresponding to various two-dimensional random
media). These computations provide a new quantitative test of the replica
method. The inferred nonuniversality (spectrum dependence) of the front speedup
is of direct importance for combustion modeling.Comment: 20 pages, 2 figures, REVTeX 4. Moved some details to appendices,
added figure on numerical metho
The Thermonuclear Explosion Of Chandrasekhar Mass White Dwarfs
The flame born in the deep interior of a white dwarf that becomes a Type Ia
supernova is subject to several instabilities. We briefly review these
instabilities and the corresponding flame acceleration. We discuss the
conditions necessary for each of the currently proposed explosion mechanisms
and the attendant uncertainties. A grid of critical masses for detonation in
the range - g cm is calculated and its
sensitivity to composition explored. Prompt detonations are physically
improbable and appear unlikely on observational grounds. Simple deflagrations
require some means of boosting the flame speed beyond what currently exists in
the literature. ``Active turbulent combustion'' and multi-point ignition are
presented as two plausible ways of doing this. A deflagration that moves at the
``Sharp-Wheeler'' speed, , is calculated in one dimension
and shows that a healthy explosion is possible in a simple deflagration if the
front moves with the speed of the fastest floating bubbles. The relevance of
the transition to the ``distributed burning regime'' is discussed for delayed
detonations. No model emerges without difficulties, but detonation in the
distributed regime is plausible, will produce intermediate mass elements, and
warrants further study.Comment: 28 pages, 4 figures included, uses aaspp4.sty. Submitted to Ap
- …
