1,241 research outputs found
Single-Scale Natural SUSY
We consider the prospects for natural SUSY models consistent with current
data. Recent constraints make the standard paradigm unnatural so we consider
what could be a minimal extension consistent with what we now know. The most
promising such scenarios extend the MSSM with new tree-level Higgs interactions
that can lift its mass to at least 125 GeV and also allow for flavor-dependent
soft terms so that the third generation squarks are lighter than current bounds
on the first and second generation squarks. We argue that a common feature of
almost all such models is the need for a new scale near 10 TeV, such as a scale
of Higgsing or confinement of a new gauge group. We consider the question
whether such a model can naturally derive from a single mass scale associated
with supersymmetry breaking. Most such models simply postulate new scales,
leaving their proximity to the scale of MSSM soft terms a mystery. This
coincidence problem may be thought of as a mild tuning, analogous to the usual
mu problem. We find that a single mass scale origin is challenging, but suggest
that a more natural origin for such a new dynamical scale is the gravitino
mass, m_{3/2}, in theories where the MSSM soft terms are a loop factor below
m_{3/2}. As an example, we build a variant of the NMSSM where the singlet S is
composite, and the strong dynamics leading to compositeness is triggered by
masses of order m_{3/2} for some fields. Our focus is the Higgs sector, but our
model is compatible with a light stop (with the other generation squarks heavy,
or with R-parity violation or another mechanism to hide them from current
searches). All the interesting low-energy mass scales, including linear terms
for S playing a key role in EWSB, arise dynamically from the single scale
m_{3/2}. However, numerical coefficients from RG effects and wavefunction
factors in an extra dimension complicate the otherwise simple story.Comment: 32 pages, 3 figures; version accepted by JHE
Non-resonant leptogenesis in seesaw models with an almost conserved B-L
We review the motivations and some results on leptogenesis in seesaw models
with an almost conserved lepton number. The paper is based on a talk given at
the 5th International Symposium on Symmetries in Subatomic Physics, SSP2012.Comment: 8 pages, 1 figure. Published in the proceedings of the 5th
International Symposium on Symmetries in Subatomic Physics, SSP201
Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory
The impact of heavy mediators on neutrino oscillations is typically described
by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We
focus on leptonic dimension-six effective operators which do not produce
charged lepton flavor violation. These operators lead to particular
correlations among neutrino production, propagation, and detection non-standard
effects. We point out that these NSIs and NU phenomenologically lead, in fact,
to very similar effects for a neutrino factory, for completely different
fundamental reasons. We discuss how the parameters and probabilities are
related in this case, and compare the sensitivities. We demonstrate that the
NSIs and NU can, in principle, be distinguished for large enough effects at the
example of non-standard effects in the --sector, which basically
corresponds to differentiating between scalars and fermions as heavy mediators
as leading order effect. However, we find that a near detector at superbeams
could provide very synergistic information, since the correlation between
source and matter NSIs is broken for hadronic neutrino production, while NU is
a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq.
(27) correcte
Mixing of Active and Sterile Neutrinos
We investigate mixing of neutrinos in the MSM (neutrino Minimal Standard
Model), which is the MSM extended by three right-handed neutrinos. Especially,
we study elements of the mixing matrix between three
left-handed neutrinos () and two sterile
neutrinos () which are responsible to the seesaw mechanism
generating the suppressed masses of active neutrinos as well as the generation
of the baryon asymmetry of the universe (BAU). It is shown that
can be suppressed by many orders of magnitude compared with
and , when the Chooz angle is large in the
normal hierarchy of active neutrino masses. We then discuss the neutrinoless
double beta decay in this framework by taking into account the contributions
not only from active neutrinos but also from all the three sterile neutrinos.
It is shown that and give substantial, destructive contributions
when their masses are smaller than a few 100 MeV, and as a results receive no stringent constraint from the current bounds on such decay.
Finally, we discuss the impacts of the obtained results on the direct searches
of in meson decays for the case when are lighter than pion
mass. We show that there exists the allowed region for with such
small masses in the normal hierarchy case even if the current bound on the
lifetimes of from the big bang nucleosynthesis is imposed. It is also
pointed out that the direct search by using and might miss such since the branching ratios can be
extremely small due to the cancellation in , but the search by
can cover the whole allowed region by improving the
measurement of the branching ratio by a factor of 5.Comment: 30 pages, 32 figure
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Effects of High-Intensity Interval Training versus Continuous Training on Physical Fitness, Cardiovascular Function and Quality of Life in Heart Failure Patients
Introduction
Physical fitness is an important prognostic factor in heart failure (HF). To improve fitness, different types of exercise have been explored, with recent focus on high-intensity interval training (HIT). We comprehensively compared effects of HIT versus continuous training (CT) in HF patients NYHA II-III on physical fitness, cardiovascular function and structure, and quality of life, and hypothesize that HIT leads to superior improvements compared to CT.
Methods
Twenty HF patients (male:female 19:1, 64±8 yrs, ejection fraction 38±6%) were allocated to 12-weeks of HIT (10*1-minute at 90% maximal workload—alternated by 2.5 minutes at 30% maximal workload) or CT (30 minutes at 60–75% of maximal workload). Before and after intervention, we examined physical fitness (incremental cycling test), cardiac function and structure (echocardiography), vascular function and structure (ultrasound) and quality of life (SF-36, Minnesota living with HF questionnaire (MLHFQ)).
Results
Training improved maximal workload, peak oxygen uptake (VO2peak) related to the predicted VO2peak, oxygen uptake at the anaerobic threshold, and maximal oxygen pulse (all P<0.05), whilst no differences were present between HIT and CT (N.S.). We found no major changes in resting cardiovascular function and structure. SF-36 physical function score improved after training (P<0.05), whilst SF-36 total score and MLHFQ did not change after training (N.S.).
Conclusion
Training induced significant improvements in parameters of physical fitness, although no evidence for superiority of HIT over CT was demonstrated. No major effect of training was found on cardiovascular structure and function or quality of life in HF patients NYHA II-III
Enhancement of immune response of HBsAg loaded poly(L-lactic acid) microspheres against Hepatitis B through incorporation of alum and chitosan
Purpose: Poly (L-lactic acid) (PLA) microparticles encapsulating Hepatitis B surface antigen (HBsAg) with alum and chitosan were investigated for their potential as a vaccine delivery system.
Methods: The microparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method with polyvinyl alcohol (PVA) or chitosan as the external phase stabilising agent showed a significant increase in the encapsulation efficiency of the antigen.
Results: PLA-Alum and PLA-chitosan microparticles induced HBsAg serum specific IgG antibody responses significantly higher than PLA only microparticles and free antigen following subcutaneous administration. Chitosan not only imparted a positive charge to the surface of the microparticles but was also able to increase the serum specific IgG antibody responses significantly.
Conclusions: The cytokine assays showed that the serum IgG antibody response induced is different according to the formulation, indicated by the differential levels of interleukin 4 (IL-4), interleukin 6 (IL-6) and interferon gamma (IFN-γ). The microparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-4, IL-6 and IFN-γ
- …
