159 research outputs found

    In vivo interaction between atToc33 and atToc159 GTP-binding domains demonstrated in a plant split-ubiquitin system

    Get PDF
    The GTPases atToc33 and atToc159 are pre-protein receptor components of the translocon complex at the outer chloroplast membrane in Arabidopsis. Despite their participation in the same complex in vivo, evidence for their interaction is still lacking. Here, a split-ubiquitin system is engineered for use in plants, and the in vivo interaction of the Toc GTPases in Arabidopsis and tobacco protoplasts is shown. Using the same method, the self-interaction of the peroxisomal membrane protein atPex11e is demonstrated. The finding suggests a more general suitability of the split-ubiquitin system as a plant in vivo interaction assa

    Expression of PHA polymerase genes of Pseudomonas putida in Escherichia coli and its effect on PHA formation

    Get PDF
    Poly-3-hydroxyalkanoates (PHAs) are synthesized by many bacteria as intracellular storage material. The final step in PHA biosynthesis is catalyzed by two PHA polymerases (phaC) in Pseudomonas putida. The expression of these two phaC genes (phaC1 and phaC2)was studied in Escherichia coli, either under control of the native promoter or under control of an external promoter. It was found that the two phaC genes are not expressed in E. coli without an external promoter. During heterologous expression of phaC from Plac on a high copy number plasmid, a rapid reduction of the number of colony forming units was observed, especially for phaC2. It appears that the plasmid instability was partially caused by high-level production of PHA polymerase. Subsequently, tightly regulated phaC2 expression systems on a low copy number vector were applied in E. coli. This resulted in PHA yields of over 20 of total cell dry weight, which was 2 fold higher than that obtained from the system where phaC2 is present on a high copy number vector. In addition, the PHA monomer composition differed when different gene expression systems or different phaC genes were applie

    The Novel Chloroplast Outer Membrane Kinase KOC1 Is a Required Component of the Plastid Protein Import Machinery

    Get PDF
    The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo. However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis, we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro, and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis

    Poly(3-hydroxyalkanoate) polymerase synthesis and in vitro activity in recombinant Escherichia coli and Pseudomonas putida

    Get PDF
    We tested the synthesis and in vitro activity of the poly(3-hydroxyalkanoate) (PHA) polymerase 1 from Pseudomonas putida GPo1 in both P. putida GPp104 and Escherichia coli JMU193. The polymerase encoding gene phaC1 was expressed using the inducible PalkB promoter. It was found that the production of polymerase could be modulated over a wide range of protein levels by varying inducer concentrations. The optimal inducer dicyclopropylketone concentrations for PHA production were at 0.03% (v/v) for P. putida and 0.005% (v/v) for E. coli. Under these concentrations the maximal polymerase level synthesized in the E. coli host (6% of total protein) was about three- to fourfold less than that in P. putida (20%), whereas the maximal level of PHA synthesized in the E. coli host (8% of total cell dry weight) was about fourfold less than that in P. putida (30%). In P. putida, the highest specific activity of polymerase was found in the mid-exponential growth phase with a maximum of 40U/g polymerase, whereas in E. coli, the maximal specific polymerase activity was found in the early stationary growth phase (2U/g polymerase). Our results suggest that optimal functioning of the PHA polymerase requires factors or a molecular environment that is available in P. putida but not in E. col

    Neural correlates of the perception of dynamic versus static facial expressions of emotion

    Get PDF
    Aim: This study investigated brain areas involved in the perception of dynamic facial expressions of emotion
    corecore