3,928 research outputs found
VideoCapsuleNet: A Simplified Network for Action Detection
The recent advances in Deep Convolutional Neural Networks (DCNNs) have shown
extremely good results for video human action classification, however, action
detection is still a challenging problem. The current action detection
approaches follow a complex pipeline which involves multiple tasks such as tube
proposals, optical flow, and tube classification. In this work, we present a
more elegant solution for action detection based on the recently developed
capsule network. We propose a 3D capsule network for videos, called
VideoCapsuleNet: a unified network for action detection which can jointly
perform pixel-wise action segmentation along with action classification. The
proposed network is a generalization of capsule network from 2D to 3D, which
takes a sequence of video frames as input. The 3D generalization drastically
increases the number of capsules in the network, making capsule routing
computationally expensive. We introduce capsule-pooling in the convolutional
capsule layer to address this issue which makes the voting algorithm tractable.
The routing-by-agreement in the network inherently models the action
representations and various action characteristics are captured by the
predicted capsules. This inspired us to utilize the capsules for action
localization and the class-specific capsules predicted by the network are used
to determine a pixel-wise localization of actions. The localization is further
improved by parameterized skip connections with the convolutional capsule
layers and the network is trained end-to-end with a classification as well as
localization loss. The proposed network achieves sate-of-the-art performance on
multiple action detection datasets including UCF-Sports, J-HMDB, and UCF-101
(24 classes) with an impressive ~20% improvement on UCF-101 and ~15%
improvement on J-HMDB in terms of v-mAP scores
Operaciones Bancarias : Análisis de la apertura y operatividad de la cuenta de ahorro y plan de ahorro meta para una persona natural del banco de producción,S.A. noviembre 2016-marzo 2017
El presente trabajo de seminario de graduación se enfoca en las operaciones que realiza un banco especialmente las operaciones pasivas. En esta investigación se explica de manera clara el proceso de apertura de una cuenta de ahorro, producto ofrecido por el Banco de la Producción
Sociedad Anónima. (BANPRO S.A) donde se identifica con en el nombre “Plan Ahorro Meta”.
En la elaboración del caso práctico tomamos como referencia la información que proporciona la entidad bancaria en su página web, al mismo tiempo se visitó una sucursal bancaria para indagar más sobre el cálculo del interés escalonado que posee como característica dicha cuenta, ya que es un producto nuevo en el mercado financiero.
Se procedió de acorde a las políticas, normas y reglamentos establecidos por la institución bancaria, esta misma respetando las leyes que la rigen; de esta forma se protegen los derechos del público y del banco al momento de iniciar una relación contractual.
En Nicaragua existen entes que se encargan de regular y supervisar dichas operaciones bancarias, es por esta razón que se analiza detenidamente las principales funciones que tienen estas entidades en relación a los bancos.
Se realizó la apertura de la cuenta de ahorro plan ahorro meta, esta opero por un periodo de 6 meses. Mismos periodo en el que se explica paso a paso la forma de cálculo de los intereses generados diarios y la capitalización al cierre del mes, de manera que los usuarios de las cuentas ya sea de ahorro, corriente o aplazo posean un entendimiento claro del funcionamiento de los tipos de depósitos que poseen los bancos
Clinical Determinants and Prognostic Implications of Renin and Aldosterone in Patients with Symptomatic Heart Failure
Aims Activation of the renin-angiotensin-aldosterone system plays an important role in the pathophysiology of heart failure (HF) and has been associated with poor prognosis. There are limited data on the associations of renin and aldosterone levels with clinical profiles, treatment response, and study outcomes in patients with HF. Methods and results We analysed 2,039 patients with available baseline renin and aldosterone levels in BIOSTAT-CHF (a systems BIOlogy study to Tailored Treatment in Chronic Heart Failure). The primary outcome was the composite of all-cause mortality or HF hospitalization. We also investigated changes in renin and aldosterone levels after administration of mineralocorticoid receptor antagonists (MRAs) in a subset of the EPHESUS trial and in an acute HF cohort (PORTO). In BIOSTAT-CHF study, median renin and aldosterone levels were 85.3 (percentile(25-75) = 28-247) mu IU/mL and 9.4 (percentile(25-75) = 4.4-19.8) ng/dL, respectively. Prior HF admission, lower blood pressure, sodium, poorer renal function, and MRA treatment were associated with higher renin and aldosterone. Higher renin was associated with an increased rate of the primary outcome [highest vs. lowest renin tertile: adjusted-HR (95% CI) = 1.47 (1.16-1.86), P = 0.002], whereas higher aldosterone was not [highest vs. lowest aldosterone tertile: adjusted-HR (95% CI) = 1.16 (0.93-1.44), P = 0.19]. Renin and/or aldosterone did not improve the BIOSTAT-CHF prognostic models. The rise in aldosterone with the use of MRAs was observed in EPHESUS and PORTO studies. Conclusions Circulating levels of renin and aldosterone were associated with both the disease severity and use of MRAs. By reflecting both the disease and its treatments, the prognostic discrimination of these biomarkers was poor. Our data suggest that the "point" measurement of renin and aldosterone in HF is of limited clinical utility
FPGA-accelerated machine learning inference as a service for particle physics computing
New heterogeneous computing paradigms on dedicated hardware with increased
parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting
solutions with large potential gains. The growing applications of machine
learning algorithms in particle physics for simulation, reconstruction, and
analysis are naturally deployed on such platforms. We demonstrate that the
acceleration of machine learning inference as a web service represents a
heterogeneous computing solution for particle physics experiments that
potentially requires minimal modification to the current computing model. As
examples, we retrain the ResNet-50 convolutional neural network to demonstrate
state-of-the-art performance for top quark jet tagging at the LHC and apply a
ResNet-50 model with transfer learning for neutrino event classification. Using
Project Brainwave by Microsoft to accelerate the ResNet-50 image classification
model, we achieve average inference times of 60 (10) milliseconds with our
experimental physics software framework using Brainwave as a cloud (edge or
on-premises) service, representing an improvement by a factor of approximately
30 (175) in model inference latency over traditional CPU inference in current
experimental hardware. A single FPGA service accessed by many CPUs achieves a
throughput of 600--700 inferences per second using an image batch of one,
comparable to large batch-size GPU throughput and significantly better than
small batch-size GPU throughput. Deployed as an edge or cloud service for the
particle physics computing model, coprocessor accelerators can have a higher
duty cycle and are potentially much more cost-effective.Comment: 16 pages, 14 figures, 2 table
Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission
Classical scrapie is an environmentally transmissible prion disease of sheep and goats. Prions can persist and remain potentially infectious in the environment for many years and thus pose a risk of infecting animals after re-stocking. In vitro studies using serial protein misfolding cyclic amplification (sPMCA) have suggested that objects on a scrapie- affected sheep farm could contribute to disease transmission. This in vivo study aimed to determine the role of field furniture (water troughs, feeding troughs, fencing, and other objects that sheep may rub against) used by a scrapie-infected sheep flock as a vector for disease transmission to scrapie-free lambs with the prion protein genotype VRQ/VRQ, which is associated with high susceptibility to classical scrapie. When the field furniture was placed in clean accommodation, sheep became infected when exposed to either a water trough (four out of five) or to objects used for rubbing (four out of seven). This field furniture had been used by the scrapie-infected flock 8 weeks earlier and had previously been shown to harbor scrapie prions by sPMCA. Sheep also became infected (20 out of 23) through exposure to contaminated field furniture placed within pasture not used by scrapie-infected sheep for 40 months, even though swabs from this furniture tested negative by PMCA. This infection rate decreased (1 out of 12) on the same paddock after replacement with clean field furniture. Twelve grazing sheep exposed to field furniture not in contact with scrapie-infected sheep for 18 months remained scrapie free. The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination
Recommended from our members
Optimizing Radiant Systems for Energy Efficiency and Comfort
Radiant cooling and heating systems provide an opportunity to achieve significant energy savings, peak demand reduction, load shifting, and thermal comfort improvements compared to conventional all-air systems. As a result, application of these systems has increased in recent years, particularly in zero-net-energy (ZNE) and other advanced low-energy buildings. Despite this growth, completed installations to date have demonstrated that controls and operation of radiant systems can be challenging due to a lack of familiarity within the heating, ventilation, and air-conditioning (HVAC) design and operations professions, often involving new concepts (particularly related to the slow response in high thermal mass radiant systems). To achieve the significant reductions in building energy use proposed by California Public Utilities Commission’s (CPUC’s) Energy Efficiency Strategic Plan that all new non-residential buildings be ZNE by 2030, it is critical that new technologies that will play a major role in reaching this goal be applied in an effective manner. This final report describes the results of a comprehensive multi-faceted research project that was undertaken to address these needed enhancements to radiant technology by developing the following: (1) sizing and operation tools (currently unavailable on the market) to provide reliable methods to take full advantage of the radiant systems to provide improved energy performance while maintaining comfortable conditions, (2) energy, cost, and occupant comfort data to provide real world examples of energy efficient, affordable, and comfortable buildings using radiant systems, and (3) Title-24 and ASHRAE Standards advancements to enhance the building industry’s ability to achieve significant energy efficiency goals in California with radiant systems. The research team used a combination of full-scale fundamental laboratory experiments, whole-building energy simulations and simplified tool development, and detailed field studies and control demonstrations to assemble the new information, guidance and tools necessary to help the building industry achieve significant energy efficiency goals for radiant systems in California
Treatment outcomes of new tuberculosis patients hospitalized in Kampala, Uganda: a prospective cohort study.
BACKGROUND: In most resource limited settings, new tuberculosis (TB) patients are usually treated as outpatients. We sought to investigate the reasons for hospitalisation and the predictors of poor treatment outcomes and mortality in a cohort of hospitalized new TB patients in Kampala, Uganda. METHODS AND FINDINGS: Ninety-six new TB patients hospitalised between 2003 and 2006 were enrolled and followed for two years. Thirty two were HIV-uninfected and 64 were HIV-infected. Among the HIV-uninfected, the commonest reasons for hospitalization were low Karnofsky score (47%) and need for diagnostic evaluation (25%). HIV-infected patients were commonly hospitalized due to low Karnofsky score (72%), concurrent illness (16%) and diagnostic evaluation (14%). Eleven HIV uninfected patients died (mortality rate 19.7 per 100 person-years) while 41 deaths occurred among the HIV-infected patients (mortality rate 46.9 per 100 person years). In all patients an unsuccessful treatment outcome (treatment failure, death during the treatment period or an unknown outcome) was associated with duration of TB symptoms, with the odds of an unsuccessful outcome decreasing with increasing duration. Among HIV-infected patients, an unsuccessful treatment outcome was also associated with male sex (P = 0.004) and age (P = 0.034). Low Karnofsky score (aHR = 8.93, 95% CI 1.88 - 42.40, P = 0.001) was the only factor significantly associated with mortality among the HIV-uninfected. Mortality among the HIV-infected was associated with the composite variable of CD4 and ART use, with patients with baseline CD4 below 200 cells/µL who were not on ART at a greater risk of death than those who were on ART, and low Karnofsky score (aHR = 2.02, 95% CI 1.02 - 4.01, P = 0.045). CONCLUSION: Poor health status is a common cause of hospitalisation for new TB patients. Mortality in this study was very high and associated with advanced HIV Disease and no use of ART
Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental-scale
Severe droughts in the Northern Hemisphere cause a widespread decline of agricultural yield, the reduction of forest carbon uptake, and increased CO2 growth rates in the atmosphere. Plants respond to droughts by partially closing their stomata to limit their evaporative water loss, at the expense of carbon uptake by photosynthesis. This trade-off maximizes their water-use efficiency (WUE), as measured for many individual plants under laboratory conditions and field experiments. Here we analyse the 13C/12C stable isotope ratio in atmospheric CO2 to provide new observational evidence of the impact of droughts on the WUE across areas of millions of square kilometres and spanning one decade of recent climate variability. We find strong and spatially coherent increases in WUE along with widespread reductions of net carbon uptake over the Northern Hemisphere during severe droughts that affected Europe, Russia and the United States in 2001–2011. The impact of those droughts on WUE and carbon uptake by vegetation is substantially larger than simulated by the land-surface schemes of six state-of-the-art climate models. This suggests that drought-induced carbon–climate feedbacks may be too small in these models and improvements to their vegetation dynamics using stable isotope observations can help to improve their drought response
- …
