69 research outputs found

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets

    Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits.

    Get PDF
    Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease

    The Trans-Ancestral Genomic Architecture of Glycemic Traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To 462 date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here, 463 we aggregated genome-wide association studies in up to 281,416 individuals without diabetes (30% 464 non-European ancestry) with fasting glucose, 2h-glucose post-challenge, glycated hemoglobin, and 465 fasting insulin data. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; 466 P&lt;5x10-8), 80% with no significant evidence of between-ancestry heterogeneity. Analyses restricted 467 to European ancestry individuals with equivalent sample size would have led to 24 fewer new loci. 468 Compared to single-ancestry, equivalent sized trans-ancestry fine-mapping reduced the number of 469 estimated variants in 99% credible sets by a median of 37.5%. Genomic feature, gene-expression 470 and gene-set analyses revealed distinct biological signatures for each trait, highlighting different 471 underlying biological pathways. Our results increase understanding of diabetes pathophysiology by 472 use of trans-ancestry studies for improved power and resolution

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices

    Get PDF
    AbstractAutosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10−72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10−4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10−5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.Abstract Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10−72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10−4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10−5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids

    Ancestral diversity improves discovery and fine-mapping of genetic loci for anthropometric traits - the Hispanic/Latino Anthropometry Consortium

    Get PDF
    Hispanic/Latinos have been underrepresented in genome-wide association studies (GWAS) for anthropometric traits despite their notable anthropometric variability, ancestry proportions, and high burden of growth stunting and overweight/obesity. To address this knowledge gap, we analyzed densely-imputed genetic data in a sample of Hispanic/Latino adults to identify and fine-map genetic variants associated with body mass index (BMI), height, and BMI-adjusted waist-to-hip ratio (WHRadjBMI). We conducted a GWAS of 18 studies/consortia as part of the Hispanic/Latino Anthropometry (HISLA) Consortium (Stage 1, n=59,771) and generalized our findings in 9 additional studies (HISLA Stage 2, n=10,538). We conducted a trans-ancestral GWAS with summary statistics from HISLA Stage 1 and existing consortia of European and African ancestries. In our HISLA Stage 1+2 analyses, we discovered one BMI locus, as well as two BMI signals and another height signal each within established anthropometric loci. In our trans-ancestral meta-analysis, we discovered three BMI loci, one height locus, and one WHRadjBMI locus. We also identified three secondary signals for BMI, 28 for height, and two for WHRadjBMI in established loci. We show that 336 known BMI, 1,177 known height, and 143 known WHRadjBMI (combined) SNPs demonstrated suggestive transferability (nominal significance and effect estimate directional consistency) in Hispanic/Latino adults. Of these, 36 BMI, 124 height, and 11 WHRadjBMI SNPs were significant after trait-specific Bonferroni correction. Trans-ancestral meta-analysis of the three ancestries showed a small-to-moderate impact of uncorrected population stratification on the resulting effect size estimates. Our findings demonstrate that future studies may also benefit from leveraging diverse ancestries and differences in linkage disequilibrium patterns to discover novel loci and additional signals with less residual population stratification

    The GLP-1 response to glucose does not mediate beta and alpha cell dysfunction in Hispanics with abnormal glucose metabolism

    No full text
    AimsGlucagon-like peptide-1 (GLP-1) contributes to insulin secretion after meals. Though Hispanics have increased risk for type 2 diabetes mellitus, it is unknown if impaired GLP-1 secretion contributes to this risk. We therefore studied plasma GLP-1 secretion and action in Hispanic adults.MethodsHispanic (H; n = 31) and non-Hispanic (nH; n = 15) participants underwent an oral glucose tolerance test (OGTT). All participants were categorized by glucose tolerance into four groups: normal glucose tolerant non-Hispanic (NGT-nH; n = 15), normal glucose tolerant Hispanic (NGT-H; n = 12), impaired glucose tolerant Hispanic (IGT-H; n = 11), or newly diagnosed type 2 diabetes mellitus, Hispanic (T2D-H; n = 8).ResultsGlucose-induced increments in plasma GLP-1 (Δ-GLP-1) were not different in NGT-H and NGT-nH (p = .38), nor amongst Hispanic subgroups with varying degrees of glucose homeostasis (p = .6). In contrast, the insulinogenic index in T2D-H group was lower than the other groups (p = .016). Subjects with abnormal glucose homeostasis (AGH), i.e., T2D-H plus IGT-H, had a diminished glucagon suppression index compared to patients with normal glucose homeostasis (NGT-H plus NGT-nH) (p = .035).ConclusionsGLP-1 responses to glucose were similar in Hispanic and Non-Hispanic NGT. Despite similar glucose-induced Δ-GLP-1, insulin and glucagon responses were abnormal in T2D-H and AGH, respectively. Thus, impaired GLP-1 secretion is unlikely to play a role in islet dysfunction in T2D. Although GLP-1 therapeutics enhance insulin secretion and glucagon suppression, it is likely due to pharmacological amplification of the GLP-1 pathways rather than treatment of hormonal deficiency

    79-OR: Butyrate Producing Bacteria and Insulin Homeostasis: The Microbiome and Insulin Longitudinal Evaluation Study (MILES)

    Full text link
    Several studies have compared the stool microbiomes of people with and without type 2 diabetes (T2D), from which a pattern of depletion of butyrate producing taxa in T2D has emerged. Seventeen taxa encompass ~85% of the total butyrate producing potential in humans (mSystems 2017;2:e00130). The goal of MILES is to elucidate the effect of diet and gut microbiota on the components of insulin homeostasis (insulin sensitivity, secretion, clearance) whose dysfunction underlies T2D. MILES consists of 224 non-Hispanic Whites and 129 African Americans (mean age 59, 62% female), all of whom have completed an oral glucose tolerance test from which insulin homeostasis traits were calculated. Stool microbiome was assessed by whole metagenome shotgun sequencing (10 Gb depth), with taxonomic profiling using MetaPhlAn3. Spearman correlation was used to assess associations between the 17 dominant butyrate producing taxa (8 genera, 9 species) and insulin sensitivity, insulin secretion, disposition index (product of insulin sensitivity and insulin secretion), and insulin clearance. The Wilcoxon test was used to associate taxa with dysglycemia (prediabetes plus diabetes, 46% of cohort). Genera Coprococcus was associated with higher insulin sensitivity (ρ=0.16, P=0.003) and disposition index (ρ=0.14, P=0.009) and a lower rate of dysglycemia. Flavonifractor was associated with lower insulin sensitivity (ρ=-0.17, P=0.002) and a higher rate of dysglycemia. Eubacterium hallii was associated with insulin sensitivity (ρ=0.12, P=0.02). Analysis of 27 species from the 8 genera revealed additional associations with insulin sensitivity and disposition index, most of which displayed positive associations with these traits. These data suggest that improved insulin sensitivity and improved insulin secretion response to insulin sensitivity (i.e., disposition index) are key mechanisms whereby butyrate producing bacteria may exert metabolic protection against T2D. Disclosure J. Cui: None. M. O. Goodarzi: None. T. Zhu: None. E. T. Jensen: None. O. L. Crago: None. G. Ramesh: None. K. M. Sandow: None. Y. Chen: None. J. I. Rotter: None. J. Petrosino: None. Funding National Institutes of Health (R01DK109588) </jats:sec
    corecore