156 research outputs found

    Gambogic acid targets HSP90 to alleviate DSS-induced colitis via inhibiting the necroptosis of intestinal epithelial cells

    Get PDF
    Abnormal elevations in the mortality of intestinal epithelial cells (IECs) are indicative of intestinal inflammation. Necroptosis of IECs represents a pro-inflammatory form of cell death, and modulation of IECs necroptosis may mitigate subsequent intestinal inflammation and preserve the integrity of the intestinal barrier. Currently, safe and effective preventive measures are lacking. In the Traditional Chinese Medicine theory, necroptosis of IECs leads to the destruction of the intestinal barrier in a manner associated with “heat and toxicity”, exacerbating intestinal inflammation. Heat shock protein 90 (HSP90) has been identified as a regulator of key proteins involved in necroptosis signal pathway including RIPK1/3 and MLKL. Gambogic acid (GA), the primary active compound found in Garcinia hanburii Hook. f., a traditional Chinese medicine used for detoxification and hemostasis, has not been studied for its potential therapeutic effects in ulcerative colitis previously. This study investigated the protective effects of GA on dextran sodium sulfate (DSS)-induced colitis in mice, as well as the underlying molecular mechanisms. GA was observed to significantly ameliorate DSS-induced enteritis and enhance intestinal barrier function. Concurrently, it reduced the phosphorylated expression levels of RIPK1/3 and MLKL. The underlying mechanism may be related to the suppression of HSP90 expression

    Room temperature spin-orbit torque efficiency and magnetization switching in SrRuO3-based heterostructures

    Full text link
    Spin-orbit torques (SOTs) from transition metal oxides (TMOs) in conjunction with magnetic materials have recently attracted tremendous attention for realizing high-efficient spintronic devices. SrRuO3 is a promising candidate among TMOs due to its large and tunable SOT-efficiency as well as high conductivity and chemical stability. However, a further study for benchmarking the SOT-efficiency and realizing SOT-driven magnetization switching in SrRuO3 is still highly desired so far. Here, we systematically study the SOT properties of high-quality SrRuO3 thin film heterostructuring with different magnetic alloys of both IMA and PMA configuration by the harmonic Hall voltage technique. Our results indicate that SrRuO3 possesses pronounced SOT-efficiency of about 0.2 at room temperature regardless of the magnetic alloys, which is comparable to typical heavy metals (HMs). Furthermore, we achieve SOT-driven magnetization switching with a low threshold current density of 3.8x10^10 A/m^2, demonstrating the promising potential of SrRuO3 for practical devices. By making a comprehensive comparison with HMs, our work unambiguously benchmarks the SOT properties and concludes the advantages of SrRuO3, which may bring more diverse choices for SOT applications by utilizing hybrid-oxide/metal and all-oxide systems.Comment: 16 pages, 4 figures, 1 tabl

    Anisotropic linear and nonlinear charge-spin conversion in topological semimetal SrIrO3

    Full text link
    Over the past decade, utilizing spin currents in the linear response of electric field to manipulate magnetization states via spin-orbit torques (SOTs) is one of the core concepts for realizing a multitude of spintronic devices. Besides the linear regime, recently, nonlinear charge-spin conversion under the square of electric field has been recognized in a wide variety of materials with nontrivial spin textures, opening an emerging field of nonlinear spintronics. Here, we report the investigation of both linear and nonlinear charge-spin conversion in one single topological semimetal SrIrO3(110) thin film that hosts strong spin-orbit coupling and nontrivial spin textures in the momentum space. In the nonlinear regime, the observation of crystalline direction dependent response indicates the presence of anisotropic surface states induced spin-momentum locking near the Fermi level. Such anisotropic spin textures also give rise to spin currents in the linear response regime, which mainly contributes to the fieldlike SOT component. Our work demonstrates the power of combination of linear and nonlinear approaches in understanding and utilizing charge-spin conversion in topological materials.Comment: 18 pages, 5 figure

    Pseudotargeted metabolomics revealed the adaptive mechanism of Draba oreades Schrenk at high altitude

    Get PDF
    Strong ultraviolet radiation and low temperature environment on Gangshika Mountain, located in the eastern part of the Qilian Mountains in Qinghai Province, can force plants to produce some special secondary metabolites for resisting severe environmental stress. However, the adaptive mechanism of Draba oreades Schrenk at high altitude are still unclear. In the current study, Draba oreades Schrenk from the Gangshika Mountain at altitudes of 3800 m, 4000 m and 4200 m were collected for comprehensive metabolic evaluation using pseudotargeted metabolomics method. Through KEGG pathway enrichment analysis, we found that phenylpropanoid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism related to the biosynthesis of flavonoids were up-regulated in the high-altitude group, which may enhance the environmental adaptability to strong ultraviolet intensity and low temperature stress in high altitude areas. By TopFc20 distribution diagram, the content of flavonoids gradually increased with the elevation of altitude, mainly including apigenin, luteolin, quercetin, hesperidin, kaempferol and their derivatives. Based on the random forest model, 10 important metabolites were identified as potential biomarkers. L-phenylalanine, L-histidine, naringenin-7-O-Rutinoside-4’-O-glucoside and apigenin related to the flavonoids biosynthesis and plant disease resistance were increased with the elevation of altitude. This study provided important insights for the adaptive mechanism of Draba oreades Schrenk at high altitude by pseudotargeted metabolomics

    Nitrogen rather than streamflow regulates the growth of riparian trees

    Get PDF
    In arid and semiarid regions, riparian forests are crucial for maintaining ecological biodiversity and sustainability, and supporting social and economic development. For the typical arid and semiarid ecosystem, streamflow variability is thought to be the dominant factor influencing the vulnerability and evolution of the riparian forests, which often leads to the neglect of other potentially important factors such as nutrient availability and transport. Here, we measured annual stable nitrogen isotopes (δ15N) and nitrogen concentrations (N%) in the tree rings of Populus euphratica Oliv. (Euphrates poplar) over a 90 year period (1920–2012), collected from the lower researches of the inland Heihe River, northwestern China. Coupling with our previous dual-isotope (δ13C and δ18O) chronologies and estimated intrinsic water-use efficiency (iWUE), we examined the linkages between tree-ring δ15N and δ18O, iWUE, streamflow, and then explored the contributions of each to tree growth during the study period. Our results show that after 1975, a statistically significant correlation between tree-ring δ15N and river streamflow appears, indicating the river as a potential carrier of nitrogen from the upper and middle reaches to the lower research trees. In addition, the linkage between tree-ring δ15N and iWUE suggests substantial influence of carbon and nitrogen together on photosynthesis and transpiration of trees, although this connection become decoupled since AD 1986. The commonality analysis revealed that the nitrogen impacts indicated by tree-ring δ15N on tree growth cannot be ignored when evaluating riparian forest development. The fertilization effects caused by rising CO2 concentration complicate the nitrogen constraints on tree growth during the later part of the past century. Our results have potentially broad implications for identifying the limited factors for dryland forest ecosystems that are susceptible to natural water resource variations and human activities

    Green Building in the Context of the Sustainable Development of Urban Ecology

    Full text link

    Competitive Intelligence Gathering in Strategic Decision Making

    No full text

    Information Fusion-Based Fault Diagnosis Method Using Synthetic Indicator

    Full text link
    corecore