16 research outputs found
Centroid-Based Lexical Clustering
Conventional lexical-clustering algorithms treat text fragments as a mixed collection of words, with a semantic similarity between them calculated based on the term of how many the particular word occurs within the compared fragments. Whereas this technique is appropriate for clustering large-sized textual collections, it operates poorly when clustering small-sized texts such as sentences. This is due to compared sentences that may be linguistically similar despite having no words in common. This chapter presents a new version of the original k-means method for sentence-level text clustering that is relay on the idea of use of the related synonyms in order to construct the rich semantic vectors. These vectors represent a sentence using linguistic information resulting from a lexical database founded to determine the actual sense to a word, based on the context in which it occurs. Therefore, while traditional k-means method application is relay on calculating the distance between patterns, the new proposed version operates by calculating the semantic similarity between sentences. This allows it to capture a higher degree of semantic or linguistic information existing within the clustered sentences. Experimental results illustrate that the proposed version of clustering algorithm performs favorably against other well-known clustering algorithms on several standard datasets
Experimental Study on Short-text Clustering Using Transformer-based Semantic Similarity Measure
Short-Text Similarity Measurement Using Word Sense Disambiguation and Synonym Expansion
Experimental and Mathematical Models for Real-Time Monitoring and Auto Watering Using IoT Architecture
Manufacturing industries based on Internet of Things (IoT) technologies play an important role in the economic development of intelligent agriculture and watering. Water availability has become a global problem that afflicts many countries, especially in remote and desert areas. An efficient irrigation system is needed for optimizing the amount of water consumption, agriculture monitoring, and reducing energy costs. This paper proposes a real-time monitoring and auto-watering system based on predicting mathematical models that efficiently control the water rate needed. It gives the plant the optimal amount of required water level, which helps to save water. It also ensures interoperability among heterogeneous sensing data streams to support large-scale agricultural analytics. The mathematical model is embedded in the Arduino Integrated Development Environment (IDE) for sensing the soil moisture level and checking whether it is less than the pre-defined threshold value, then plant watering is performed automatically. The proposed system enhances the watering system’s efficiency by reducing the water consumption by more than 70% and increasing production due to irrigation optimization. It also reduces the water and energy consumption amount and decreases the maintenance costs
Experimental and Mathematical Models for Real-Time Monitoring and Auto Watering Using IoT Architecture
Manufacturing industries based on Internet of Things (IoT) technologies play an important role in the economic development of intelligent agriculture and watering. Water availability has become a global problem that afflicts many countries, especially in remote and desert areas. An efficient irrigation system is needed for optimizing the amount of water consumption, agriculture monitoring, and reducing energy costs. This paper proposes a real-time monitoring and auto-watering system based on predicting mathematical models that efficiently control the water rate needed. It gives the plant the optimal amount of required water level, which helps to save water. It also ensures interoperability among heterogeneous sensing data streams to support large-scale agricultural analytics. The mathematical model is embedded in the Arduino Integrated Development Environment (IDE) for sensing the soil moisture level and checking whether it is less than the pre-defined threshold value, then plant watering is performed automatically. The proposed system enhances the watering system’s efficiency by reducing the water consumption by more than 70% and increasing production due to irrigation optimization. It also reduces the water and energy consumption amount and decreases the maintenance costs.</jats:p
Computational linguistic techniques for sentence-level text processing
Submission note: A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Engineering and Mathematical Sciences, Faculty of Science, Technology and Engineering, La Trobe University, Bundoora
