28 research outputs found
The genetic epidemiology of joint shape and the development of osteoarthritis
Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed
Liposomal Targeting of Prednisolone Phosphate to Synovial Lining Macrophages during Experimental Arthritis Inhibits M1 Activation but Does Not Favor M2 Differentiation
Contains fulltext :
118730.pdf (publisher's version ) (Open Access)BACKGROUND: To determine the effects of liposomal targeting of prednisolone phosphate (Lip-PLP) to synovial lining macrophages on M1 and M2 polarization in vitro and during experimental arthritis. MATERIAL AND METHODS: Experimental arthritis (antigen and immune complex induced) was elicited in mice and prednisolone containing liposomes were given systemically. Synovium was investigated using microarray analysis, RT-PCR and histology. Bone-marrow macrophages were stimulated towards M1 using LPS and IFNgamma before treatment by PLP-liposomes. M1 and M2 markers were determined using RT-PCR. RESULTS: Microarray analysis of biopsies of inflamed synovium during antigen induced arthritis (AIA) showed an increased M1 signature characterized by upregulation of IL-1beta, IL-6 and FcgammaRI starting from day 1 and lasting up until day 7 after arthritis induction. The M2 signature remained low throughout the 7 day course of arthritis. Treatment of AIA with intravenously delivered Lip-PLP strongly suppressed joint swelling and synovial infiltration whereas colloidal gold containing liposomes exclusively targeted the macrophages within the inflamed synovial intima layer. studies showed that Lip-PLP phagocytosed by M1 macrophages resulted in a suppression of the M1 phenotype and induction of M2 markers (IL-10, TGF-beta, IL-1RII, CD163, CD206 and Ym1). , Lip-PLP treatment strongly suppressed M1 markers (TNF-alpha, IL-1beta, IL-6, IL-12p40, iNOS, FcgammaRI, Ciita and CD86) after local M1 activation of lining macrophages with LPS and IFN-gamma and during experimental AIA and immune complex arthritis (ICA). In contrast, M2 markers were not significantly upregulated in antigen-induced arthritis and down regulated in immune complex arthritis. CONCLUSION: This study clearly shows that systemic treatment with PLP-liposomes selectively targets synovial lining macrophages and inhibits M1 activation. In contrast to findings, PLP-liposomes do not cause a shift of synovial lining macrophages towards M2
Mycobacterium tuberculosis UvrD1 and UvrA Proteins Suppress DNA Strand Exchange Promoted by Cognate and Noncognate RecA Proteins
DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins
