100 research outputs found
LES NOUVELLES THÉÂTRALITÉS DE L’ESPACE PUBLIC ET L’IMAGE DE LA VILLE « Recherches et actions au sein de la ville de Jijel
This work is an attempt to define, understand, classify and analyse the urban theatricalities of the city
of Jijel.
With the intention of bringing contemporary readings and interpretations to the multiple dimensions
of public space, this research is intended to be a prolegomena of reflections on urban space as a scene
transcribing the daily life. The city and its public spaces are by that a theatre of urban comedy,
allowing the new actors, spectators, managers and directors of the urban fabric to play their roles
consciously or unconsciously.
It is through scenic readings, content analysis, and research interviews that the socio-spatial maps of
this city will be presented, revisited and reinterpreted, revealing the changes of the sprawling city of
on one side, and the deep dimensions of the historical-social weight on the other.
The superposition of the “physical maps” and “socio-historical maps” then finds an echo under the
symphony of new urban theatricalities, transforming in their passages the image of the urban
landscape and of the city in general
Molecularly Engineered Self-Assembling Membranes for Cell-Mediated Degradation
The use of peptide engineering to develop self-assembling membranes that are responsive to cellular enzyme activities is reported. The membranes are obtained by combining hyaluronan (HA) and a rationally designed peptide amphiphile (PA) containing a proteolytic domain (GPQGIWGQ octapeptide) sensitive to matrix metalloproteinase-1 (MMP-1). Insertion of an octapeptide in a typical PA structure does not disturb its self-assembly into fibrillar nanostructures neither the ability to form membranes with HA. In vitro enzymatic degradation with hyaluronidase and MMP-1 shows that membranes containing the MMP-1 substrate exhibit enhanced enzymatic degradation, compared with control membranes (absence of MMP-1 cleavable peptide or containing a MMP-1 insensitive sequence), being completely degraded after 7 days. Cell viability and proliferation is minimally affected by the enzymatically cleavable functionality of the membrane, but the presence of MMP-1 cleavable sequence does stimulate the secretion of MMP-1 by fibroblasts and interfere with matrix deposition, particularly the deposition of collagen. By showing cell-responsiveness to biochemical signals presented on self-assembling membranes, this study highlights the ability of modulating certain cellular activities through matrix engineering. This concept can be further explored to understand the cellular remodeling process and as a strategy to develop artificial matrices with more biomimetic degradation for tissue engineering applications.This work was funded by the European Regional Development Fund (ERDF) through the Operational Competitiveness Programme "COMPETE" (FCOMP-01-0124-FEDER-014758) and national funds through the Portuguese Foundation for Science and Technology (FCT) under the project PTDC/EBB-BIO/114523/2009. The authors also thank a start-up grant provided by the School of Engineering and Materials Science at QMUL. D.S.F. gratefully acknowledges FCT for the PhD scholarship (SFRH/BD/44977/2008)
Optimal control strategies for the premium policy of an insurance firm with jump diffusion assets and stochastic interest rate
In this paper, we present a stochastic optimal control model to optimize an insurance firm problem in the case where its cash-balance process is assumed to be described by a stochastic differential equation driven by Teugels martingales. Noticing that the insurance firm is able to control its cash-balance dynamics by regulating the underlying premium rate, the aim of the policy maker is to select an appropriate premium in order to minimize the total deviation of the state process to some pre-set target level. As a part of stochastic maximum principle approach, a verification theorem is used to fulfill this achievement
Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces
Propriétés magnétiques de ferrofluides de nano-aimants auto-assemblés
The main objective of this thesis is to explore the effects of the assembly caused by dipolar magnetic interactions between magnetic nanoparticles suspended in a liquid (so-called ferrofluid) on the magnetic properties of this ferrofluid. It is based on the in-depth characterization of ferrofluids made up of flower-shaped nanoparticles composed of hard magnetic materials such as cobalt ferrite (CoFe2O4), or soft magnetic materials such as manganese ferrite (MnFe2O4) and maghemite (γ- Fe2O3). The magnetic properties of these ferrofluids were measured using standard magnetometry methods, highlighting the significant influence of the chemical composition of the nanoparticles on the macroscopic characteristics of the ferrofluid. In addition, this research focused on the structuring of nanoparticles in liquid ferrofluid, by observing isolated particles, as well as the formation of assemblies and aggregates, using a cryogenic Transmission Electron Microscopy method, with a protocol developed specifically during the thesis. The impact of nanoparticle morphology on their magnetic properties was explored using tomography, three-dimensional imaging of nanoparticles, in collaboration with the IPCMS laboratory in Strasbourg. At the nanoscale, the magnetic properties of the assemblies were measured using electron holography, in collaboration with the CEMES laboratory in Toulouse. The study of binary ferrofluids, defined as ferrofluid mixtures composed of nanoparticles of hard and soft magnetic materials, has enabled new dipolar magnetic interactions to be explored. These new materials allow creating ferrofluids with novel properties that may be of interest for biomedical applications. These binary ferrofluids have revealed original bulk magnetic properties that differ from the simple addition of the individual properties of the original ferrofluids. In addition, the organization of nanoparticles in the binary ferrofluid has been meticulously studied using chemically selective and spatially resolved transmission X-ray microscopy on the HERMES beamline at the SOLEIL synchrotron, yielding chemical mappings of CoFe2O4 and MnFe2O4 nanoparticle assemblies. The separation of the magnetic contributions of the two types of nanoparticles composing the binary ferrofluid was achieved using a magnetometry technique known as the FORC (First Order Reversal Curve) diagram, in collaboration with the IPGP laboratory. FORC diagrams were used to assess the influence of CoFe2O4 nanoparticles on the magnetic behavior of MnFe2O4 nanoparticles in the binary ferrofluid. In addition, spectroscopic measurements of chemically selective magnetization curves were carried out using a liquid cell for in-situ ferrofluid measurements, with experiments carried out on the GALAXIES beamline at the SOLEIL synchrotron. Finally, a comparison of the magnetic properties of different binary ferrofluids was undertaken, by varying the ratio between hard and soft magnetic components, the composition of the soft material as well as the size of the nanoparticles, thus providing a comprehensive perspective on the design and optimization possibilities of these advanced magnetic materials. This thesis establishes a significant relationship between the structuring of nanoparticles in ferrofluid and their magnetic properties.Cette thèse a pour objectif principal d'explorer les effets de l’assemblage créé par les interactions magnétiques dipolaires entre des nanoparticules magnétiques en suspension colloïdales dans un liquide (ferrofluide) sur les propriétés magnétiques de ce ferrofluide. Ce travail se base sur la caractérisation approfondie de ferrofluides constitués de nanoparticules en forme de fleurs composées de matériaux magnétiques durs tels que la ferrite de cobalt (CoFe2O4), ou de matériaux magnétiques mous comme la ferrite de manganèse (MnFe2O4) et la maghémite (γ-Fe2O3). Les propriétés magnétiques de ces ferrofluides ont été mesurées à l'aide de magnétométrie classique, mettant en évidence l'influence significative de la composition chimique des nanoparticules sur les caractéristiques macroscopiques du ferrofluide. De plus, je me suis intéressée à la structuration des nanoparticules dans le ferrofluide liquide, en observant des particules isolées ainsi que la formation d'assemblages et d'agrégats, grâce à une méthode de Microscopie Electronique en Transmission cryogénique, avec un protocole développé spécifiquement pendant la thèse. L'impact de la morphologie des nanoparticules sur leurs propriétés magnétiques a été exploré grâce à la tomographie, imagerie en trois dimensions des nanoparticules, en collaboration avec le laboratoire IPCMS de Strasbourg. À l'échelle nanométrique, les propriétés magnétiques des assemblages ont été mesurées au moyen de l'holographie électronique, en collaboration avec le laboratoire CEMES de Toulouse. L'introduction des ferrofluides binaires, définis comme des mélanges de ferrofluides composés de nanoparticules de matériaux magnétiques durs et mous, a permis d'explorer de nouvelles interactions magnétiques dipolaires. Ces matériaux permettent de créer des ferrofluides aux propriétés nouvelles pouvant présenter un intérêt pour des applications biomédicales. Ces ferrofluides binaires ont révélé des propriétés magnétiques globales originales qui diffèrent de la simple addition des propriétés individuelles des ferrofluides originels. En outre, l'organisation des nanoparticules dans le ferrofluide binaire a été minutieusement étudiée en utilisant la spectroscopie chimiquement sélective et résolue spatialement par microscopie à rayons X en transmission sur la ligne HERMES du synchrotron SOLEIL, permettant d'obtenir des cartographies chimiques d’assemblages de nanoparticules de CoFe2O4 et de MnFe2O4. La séparation des contributions magnétiques des deux types de nanoparticules composant le ferrofluide binaire a été réalisée à l'aide d’une technique de magnétométrie appelée diagramme de FORC (First Order Reversal Curve), en collaboration avec le laboratoire IPGP. Les diagrammes de FORC ont permis d’identifier et d’évaluer l’influence des nanoparticules de CoFe2O4 sur le comportement magnétique des nanoparticules de MnFe2O4 dans le ferrofluide binaire. De plus, des mesures de courbes d’aimantation chimiquement sélective par spectroscopie ont été réalisées grâce à une cellule liquide permettant une mesure in-situ des ferrofluides, avec des expériences menées sur la ligne GALAXIES du synchrotron SOLEIL. Enfin, une comparaison des propriétés magnétiques de différents ferrofluides binaires a été entreprise, en variant le ratio entre matériau magnétique dur et mou, la composition du matériau mou ainsi que la taille des nanoparticules, offrant ainsi une perspective complète sur les possibilités de conception et d'optimisation de ces matériaux magnétiques avancés. Cette thèse établit une relation significative entre la structuration des nanoparticules dans le ferrofluide et leurs propriétés magnétiques
Propriétés magnétiques de ferrofluides de nano-aimants auto-assemblés
Cette thèse a pour objectif principal d'explorer les effets de l’assemblage créé par les interactions magnétiques dipolaires entre des nanoparticules magnétiques en suspension colloïdales dans un liquide (ferrofluide) sur les propriétés magnétiques de ce ferrofluide. Ce travail se base sur la caractérisation approfondie de ferrofluides constitués de nanoparticules en forme de fleurs composées de matériaux magnétiques durs tels que la ferrite de cobalt (CoFe2O4), ou de matériaux magnétiques mous comme la ferrite de manganèse (MnFe2O4) et la maghémite (γ-Fe2O3). Les propriétés magnétiques de ces ferrofluides ont été mesurées à l'aide de magnétométrie classique, mettant en évidence l'influence significative de la composition chimique des nanoparticules sur les caractéristiques macroscopiques du ferrofluide. De plus, je me suis intéressée à la structuration des nanoparticules dans le ferrofluide liquide, en observant des particules isolées ainsi que la formation d'assemblages et d'agrégats, grâce à une méthode de Microscopie Electronique en Transmission cryogénique, avec un protocole développé spécifiquement pendant la thèse. L'impact de la morphologie des nanoparticules sur leurs propriétés magnétiques a été exploré grâce à la tomographie, imagerie en trois dimensions des nanoparticules, en collaboration avec le laboratoire IPCMS de Strasbourg. À l'échelle nanométrique, les propriétés magnétiques des assemblages ont été mesurées au moyen de l'holographie électronique, en collaboration avec le laboratoire CEMES de Toulouse. L'introduction des ferrofluides binaires, définis comme des mélanges de ferrofluides composés de nanoparticules de matériaux magnétiques durs et mous, a permis d'explorer de nouvelles interactions magnétiques dipolaires. Ces matériaux permettent de créer des ferrofluides aux propriétés nouvelles pouvant présenter un intérêt pour des applications biomédicales. Ces ferrofluides binaires ont révélé des propriétés magnétiques globales originales qui diffèrent de la simple addition des propriétés individuelles des ferrofluides originels. En outre, l'organisation des nanoparticules dans le ferrofluide binaire a été minutieusement étudiée en utilisant la spectroscopie chimiquement sélective et résolue spatialement par microscopie à rayons X en transmission sur la ligne HERMES du synchrotron SOLEIL, permettant d'obtenir des cartographies chimiques d’assemblages de nanoparticules de CoFe2O4 et de MnFe2O4. La séparation des contributions magnétiques des deux types de nanoparticules composant le ferrofluide binaire a été réalisée à l'aide d’une technique de magnétométrie appelée diagramme de FORC (First Order Reversal Curve), en collaboration avec le laboratoire IPGP. Les diagrammes de FORC ont permis d’identifier et d’évaluer l’influence des nanoparticules de CoFe2O4 sur le comportement magnétique des nanoparticules de MnFe2O4 dans le ferrofluide binaire. De plus, des mesures de courbes d’aimantation chimiquement sélective par spectroscopie ont été réalisées grâce à une cellule liquide permettant une mesure in-situ des ferrofluides, avec des expériences menées sur la ligne GALAXIES du synchrotron SOLEIL. Enfin, une comparaison des propriétés magnétiques de différents ferrofluides binaires a été entreprise, en variant le ratio entre matériau magnétique dur et mou, la composition du matériau mou ainsi que la taille des nanoparticules, offrant ainsi une perspective complète sur les possibilités de conception et d'optimisation de ces matériaux magnétiques avancés. Cette thèse établit une relation significative entre la structuration des nanoparticules dans le ferrofluide et leurs propriétés magnétiques.The main objective of this thesis is to explore the effects of the assembly caused by dipolar magnetic interactions between magnetic nanoparticles suspended in a liquid (so-called ferrofluid) on the magnetic properties of this ferrofluid. It is based on the in-depth characterization of ferrofluids made up of flower-shaped nanoparticles composed of hard magnetic materials such as cobalt ferrite (CoFe2O4), or soft magnetic materials such as manganese ferrite (MnFe2O4) and maghemite (γ- Fe2O3). The magnetic properties of these ferrofluids were measured using standard magnetometry methods, highlighting the significant influence of the chemical composition of the nanoparticles on the macroscopic characteristics of the ferrofluid. In addition, this research focused on the structuring of nanoparticles in liquid ferrofluid, by observing isolated particles, as well as the formation of assemblies and aggregates, using a cryogenic Transmission Electron Microscopy method, with a protocol developed specifically during the thesis. The impact of nanoparticle morphology on their magnetic properties was explored using tomography, three-dimensional imaging of nanoparticles, in collaboration with the IPCMS laboratory in Strasbourg. At the nanoscale, the magnetic properties of the assemblies were measured using electron holography, in collaboration with the CEMES laboratory in Toulouse. The study of binary ferrofluids, defined as ferrofluid mixtures composed of nanoparticles of hard and soft magnetic materials, has enabled new dipolar magnetic interactions to be explored. These new materials allow creating ferrofluids with novel properties that may be of interest for biomedical applications. These binary ferrofluids have revealed original bulk magnetic properties that differ from the simple addition of the individual properties of the original ferrofluids. In addition, the organization of nanoparticles in the binary ferrofluid has been meticulously studied using chemically selective and spatially resolved transmission X-ray microscopy on the HERMES beamline at the SOLEIL synchrotron, yielding chemical mappings of CoFe2O4 and MnFe2O4 nanoparticle assemblies. The separation of the magnetic contributions of the two types of nanoparticles composing the binary ferrofluid was achieved using a magnetometry technique known as the FORC (First Order Reversal Curve) diagram, in collaboration with the IPGP laboratory. FORC diagrams were used to assess the influence of CoFe2O4 nanoparticles on the magnetic behavior of MnFe2O4 nanoparticles in the binary ferrofluid. In addition, spectroscopic measurements of chemically selective magnetization curves were carried out using a liquid cell for in-situ ferrofluid measurements, with experiments carried out on the GALAXIES beamline at the SOLEIL synchrotron. Finally, a comparison of the magnetic properties of different binary ferrofluids was undertaken, by varying the ratio between hard and soft magnetic components, the composition of the soft material as well as the size of the nanoparticles, thus providing a comprehensive perspective on the design and optimization possibilities of these advanced magnetic materials. This thesis establishes a significant relationship between the structuring of nanoparticles in ferrofluid and their magnetic properties
Locally Lipschitz BSDE with jumps and related Kolmogorov equation
We study a backward SDE driven by a jump Markov process (BSDEJ for short) whose generator may be locally Lipschitz or of logarithmic growth in [Formula: see text]-variables. The existence, uniqueness and stability theorems to such BSDEJs are established. We essentially approximate the initial problem by constructing a suitable sequence of BSDEJs with globally Lipschitz generators for which the existence and uniqueness of solutions hold. By passing to the limits, we show the existence and uniqueness of solutions to the original problems. We apply our main results to prove the existence of a unique solution to the Kolmogorov equation of the Markov process. </jats:p
The Maximum Principle for Optimal Control of BSDEs with Locally Lipschitz Coefficients
- …
