1,114 research outputs found

    Endodontic management of open apex using MTA and platelet-rich fibrin membrane barrier: A newer matrix concept

    Get PDF
    Objectives: Endodontic management of open apex using MTA and platelet-rich fibrin membrane as an apical matrix barrier. Study design: An immature tooth with pulpal necrosis and periapical pathology imposes a great difficulty to the endodontist. Endodontic treatment options for such teeth consist of conventional apexification procedure with and without apical barriers. This article demonstrates the use of an apical matrix barrier in form of a platelet rich fibrin membrane for stabilization of MTA in root end apexification procedure. PRF is an autologous fibrin matrix containing a large quantity of platelet and leukocyte cytokines, which enhance healing by release of growth factors. These case reports present apexification and successful healing with combined use of MTA and PRF membrane as an apical barrier Results: PRF membrane can serve as an efficient apical matrix for condensation of MTA. Combination of PRF membrane and MTA is an effective method for management of difficult cases of open apex. PRF is a strong fibrin membrane enriched with platelet and growth factors that accelerate periapical healing

    Time Whispers in My Ear by Aju Mukhopadhyay

    Get PDF
    Time Whispers in My Ear by Aju Mukhopadhyay, OnlineGatha, ISBN: 978-9385818011, 2015

    Mining Genomic Variants And Causal Pathways Linking Hdl And Triglycerides To Coronary Disease

    Get PDF
    Blood lipids are important biomarkers of risk of coronary heart disease (CHD), the leading cause of death in the world. Myriad data support a causal role of low-density lipoprotein cholesterol (LDL-C) in increasing risk of CHD. Long-standing epidemiology suggests that high-density lipoprotein cholesterol (HDL-C) may protect from disease while high triglycerides (TGs) increase CHD risk. However, the causality of HDL-C and TG to CHD remains controversial. New genetic methodologies have allowed a better look into causal pathways underlying relationships between these traits and disease. Using a combination of approaches for interrogating rare genetic variation in humans, we investigated how HDL and TG may relate to CHD. First, through sequencing and exome-wide genotyping of subjects with extremely high HDL-C, we identified the first homozygote for a loss-of-function (LOF) variant in SCARB1, which encodes scavenger receptor class BI (SR-BI), a hepatic receptor for HDL-C. Despite markedly elevated HDL-C, carriers of this variant had an increased risk of CHD. These findings suggest that HDL functionality in driving cholesterol removal through SR-BI (the reverse cholesterol transport hypothesis) is protective from CHD in humans. Next, we functionally examined one of the first novel loci from genome-wide association studies (GWAS) for HDL-C, GALNT2. Through discovery of humans with genetic GALNT2 LOF and additional studies in rodents and nonhuman primates, we showed that GALNT2 LOF lowers HDL-C across mammals. We also identify one physiological mechanism linking GALNT2 to HDL-C through its enzymatic function. Thirdly, we studied the mechanism of protection of the APOC3 A43T variant recently reported to lower TGs and CHD risk from exome sequencing. Studies in human carriers and animal models suggest that A43T accelerates renal clearance of circulating ApoC-III, thus hindering its function in delaying TG-rich lipoprotein turnover. These data establish ApoC-III clearance mechanisms as potential therapeutic targets for TG lowering. Finally, we adapted a targeted sequencing approach to increase discovery of causal rare coding and noncoding variants at candidate loci influencing HDL-C and TGs. Collectively, this work provides a sampling of approaches for leveraging the spectrum of genomic methods to identify clinically relevant variants impacting HDL, TG and CHD risk

    Near-Threshold Neutral Pion Electroproduction at High Momentum Transfers and Generalized Form Factors

    Get PDF
    We report the measurement of near-threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range Q2 from 2 to 4.5 GeV2 and W from 1.08 to 1.16 GeV. These measurements allow us to access the dominant pion-nucleon s-wave multipoles E0+ and S0+ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors Gπ0p1(Q2) and Gπ0p2(Q2). The data are compared to these generalized form factors and the results for Gπ0p1(Q2) are found to be in good agreement with the LCSR predictions, but the level of agreement with Gπ0p2(Q2) is poor

    Comment on the narrow structure reported by Amaryan et al

    Full text link
    The CLAS Collaboration provides a comment on the physics interpretation of the results presented in a paper published by M. Amaryan et al. regarding the possible observation of a narrow structure in the mass spectrum of a photoproduction experiment.Comment: to be published in Physical Review
    corecore