314 research outputs found
Application of biosignal-driven intelligent systems for multifunction prosthesis control
University of Technology, Sydney. Faculty of Engineering and Information Technology.Prosthetic devices aim to provide an artificial alternative to missing limbs. The controller for such devices is usually driven by the biosignals generated by the human body, particularly Electromyogram (EMG) or Electroencephalogram (EEG) signals. Such a controller utilizes a pattern recognition approach to classify the EMG signal recorded from the human muscles or the EEG signal from the brain. The aim of this thesis is to improve the EMG and EEG pattern classification accuracy. Due to the fact that the success of pattern recognition based biosignal driven systems highly depends on the quality of extracted features, a number of novel, robust, hybrid and innovative methods are proposed to achieve better performance. These methods are developed to effectively tackle many of the limitations of existing systems, in particular feature representation and dimensionality reduction. A set of knowledge extraction methods that can accurately and rapidly identify the most important attributes for classifying the arm movements are formulated. This is accomplished through the following:
1. Developing a new feature extraction technique that can identify the most important features from the high-dimensional time-frequency representation of the multichannel EMG and EEG signals. For this task, an information content estimation method using fuzzy entropies and fuzzy mutual information is proposed to identify the optimal wravelet packet transform decomposition for classification.
2. Developing a powerful variable (feature or channel) selection paradigm to improve the performance of multi-channel EMG and EEG driven systems. This will eventually lead to the development of a combined channel and feature selection technique as one possible scheme for dimensionality reduction. Two novel feature selection methods are developed under this scheme utilizing the ant colony arid differential evolution optimization techniques. The differential evolution optimization technique is further modified in a novel attempt in employing a float optimizer for the combinatorial task of feature selection, proving powerful performance by both methods.
3. Developing two feature projection techniques that extract a small subset of highly informative discriminant features, thus acting as an alternative scheme for dimensionality reduction. The two methods represent novel variations to fuzzy discriminant analysis based projection techniques. In addition, an extension to the non-linear discriminant analysis is proposed based on a mixture of differential evolution and fuzzy discriminant analysis.
The testing and verification process of the proposed methods on different EMG and EEG datasets provides very encouraging results
Enhancing the diversity of genetic algorithm for improved feature selection
Genetic algorithm (GA) is one of the most widely used population-based evolutionary search algorithms. One of the challenging optimization problems in which GA has been extensively applied is feature selection. It aims at finding an optimal small size subset of features from the original large feature set. It has been found that the main limitation of the traditional GA-based feature selection is that it tends to get trapped in local minima, a problem known as premature convergence. A number of implementations are presented in the literature to overcome this problem based on fitness scaling, genetic operator modification, boosting genetic population diversity, etc. This paper presents a new modified genetic algorithm based on enhanced population diversity, parents' selection and improved genetic operators. Practical results indicate the significance of the proposed GA variant in comparison to many other algorithms from the literature on different datasets. ©2010 IEEE
Optimizing the k-NN metric weights using differential evolution
Traditional k-NN classifier poses many limitations including that it does not take into account each class distribution, importance of each feature, contribution of each neighbor, and the number ofinstances for each class. A Differential evolution (DE) optimization technique is utilized to enhance the performance of k-NN through optimizing the metric weights of features, neighbors and classes. Several datasets are used to evaluate the performance of the proposed DE based metrics and to compare it to some k-NN variants from the literature. Practical experiments indicate that in most cases, incorporating DE in k-NN classification can provide more accurate performance. ©2010 IEEE
Differential Evolution based feature subset selection
In this paper, a novel feature selection algorithm based on Differential Evolution (DE) optimization technique is presented. The new algorithm, called DEFS, modifies the DE which is a real-valued optimizer, to suit the problem of feature selection. The proposed DEFS highly reduces the computational costs while at the same time proving to present powerful performance. The DEFS technique is applied to a brain-computer-interface (BCI) application and compared with other dimensionality reduction techniques. The practical results indicate the significance of the proposed algorithm in terms of solutions optimality, memory requirement, and computational cost. © 2008 IEEE
Intelligent driver drowsiness detection system using uncorrelated fuzzy locality preserving analysis
One of the leading causes of automobile accidents is related to driving impairment due to drowsiness. A large percentage of these accidents occur due to drivers' unawareness of the degree of impairment. An automatic detection of drowsiness levels could lead to lower accidents and hence lower fatalities. However, the significant fluctuations of the drowsiness state within a short time poses a major challenge in this problem. In response to such a challenge, we present the Uncorrelated Fuzzy Locality Preserving Analysis (UFLPA) feature projection method. The proposed UFLPA utilizes the changes in driver behavior, by means of the corresponding Electroencephalogram (EEG), Electrooculogram (EOG), and Electrocardiogram (ECG) signals to extract a set of features that can highly discriminate between the different drowsiness levels. Unlike existing methods, the proposed UFLPA takes into consideration the fuzzy nature of the input measurements while preserving the local discriminant and manifold structures of the data. Additionally, UFLPA also utilizes Singular Value Decomposition (SVD) to avoid the singularity problem and produce a set of uncorrelated features. Experiments were performed on datasets collected from thirty-one subjects participating in a simulation driving test with practical results indicating the significance of the results achieved by UFLPA of 94%-95% accuracy on average across all subjects. © 2011 IEEE
Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees
We investigate the problem of achieving robust control of hand prostheses by the electromyogram (EMG) of transradial amputees in the presence of variable force levels, as these variations can have a substantial impact on the robustness of the control of the prostheses. We also propose a novel set of features that aim at reducing the impact of force level variations on the prosthesis controlled by amputees. These features characterize the EMG activity by means of the orientation between a set of spectral moments descriptors extracted from the EMG signal and a nonlinearly mapped version of it. At the same time, our feature extraction method processes the EMG signals directly from the time-domain to reduce computational cost. The performance of the proposed features is tested on EMG data collected from nine transradial amputees performing six classes of movements each with three force levels. Our results indicate that the proposed features can achieve significant reductions in classification error rates in comparison to other well-known feature extraction methods, achieving improvements of ≈ 6% to 8% in the average classification performance across all subjects and force levels, when training with all forces
Swarm Intelligence In Myoelectric Control: Particle Swarm Based Dimensionality Reduction
The myoelectric signals (MES) from human muscles have been utilized in many applications such as prosthesis control. The identification of various MES temporal structures is used to control the movement of prosthetic devices by utilizing a pattern recognition approach. Recent advances in this field have shown that there are a number of factors limiting the clinical availability of such systems. Several control strategies have been proposed but deficiencies still exist with most of those strategies especially with the Dimensionality Reduction (DR) part. This paper proposes using Particle Swarm Optimization (PSO) algorithm with the concept of Mutual Information (MI) to produce a novel hybrid feature selection algorithm. The new algorithm, called PSOMIFS, is utilized as a DR tool in myoelectric control problems. The PSOMIFS will be compared with other techniques to prove the effectiveness of the proposed method. Accurate results are acquired using only a small subset of the original feature set producing a classification accuracy of 99% across a problem of ten classes based on tests done on six subjects MES datasets
Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm
Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-97% on an average across all subjects. © 2011 IEEE
Fuzzy discriminant analysis based feature projection in myoelectric control.
The myoelectric signal (MES) from human muscles is usually utilized as an input to the controller of a multifunction prosthetic hand. In such a system, a pattern recognition approach is usually employed to discriminate between the MES from different classes. Since the MES is recorded using multi channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative moderate size feature set. This paper proposes a novel feature projection technique based on a combination of Fisher's Linear Discriminant Analysis (LDA), and Fuzzy Logic. The new method, called FLDA, assigns different membership degrees to the data points thus reducing the effect of overlapping points in the discrimination process. Furthermore, the concept of Mutual Information (MI) is introduced in the fuzzy memberships in order to assign weights to the features (attributes) according to their contribution to the discrimination process. The FLDA method is tested on a seven classes MES dataset and compared with other feature projection techniques proving its superiority
Swarmed discriminant analysis for multifunction prosthesis control
One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher's Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority
- …
