606 research outputs found
A Global Land System Framework for Integrated Climate-Change Assessments
Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).Land ecosystems play a major role in the global cycles of energy, water, carbon and nutrients. A Global Land System (GLS) framework has been developed for the Integrated Global Systems Model Version 2 (IGSM2) to simulate the coupled biogeophysics and biogeochemistry of these ecosystems, as well as the interactions of these terrestrial processes with the climate system. The GLS framework has resolved a number of water and energy cycling deficiencies and inconsistencies introduced in IGSM1. In addition, a new representation of global land cover and classification as well as soil characteristics has been employed that ensures a consistent description of the global land surface amongst all the land components of the IGSM2. Under this new land cover classification system, GLS is run for a mosaic of land cover types within a latitudinal band defined by the IGSM2 atmosphere dynamics and chemistry sub-model. The GLS shows notable improvements in the representation of land fluxes and states of water and energy over the previous treatment of land processes in the IGSM1. In addition, the zonal features of simulated carbon fluxes as well as key trace gas emissions of methane and nitrous oxide are comparable to estimates based on higher resolution models constrained by observed climate forcing. Given this, the GLS framework represents a key advance in the ability of the IGSM to faithfully represent coupled terrestrial processes to the climate system, and is well poised to support more robust two-way feedbacks of natural and managed hydrologic and ecologic systems with the climate and socio-economic components of the IGSM2.This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors
Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America
We use the terrestrial ecosystem model (TEM), a process-based model, to investigate how interactions between carbon (C) and nitrogen (N) dynamics affect predictions of net primary productivity (NPP) for potential vegetation in North America. Data on pool sizes and fluxes of C and N from intensively studied field sites are used to calibrate the model for each of 17 non-wetland vegetation types. We use information on climate, soils, and vegetation to make estimates for each of 11,299 non-wetland, 0.5° latitude × 0.5° longitude, grid cells in North America. The potential annual NPP and net N mineralization (NETNMIN) of North America are estimated to be 7.032 × 1015 g C yr−1 and 104.6 × 1012 g N yr−1, respectively. Both NPP and NETNMIN increase along gradients of increasing temperature and moisture in northern and temperate regions of the continent, respectively. Nitrogen limitation of productivity is weak in tropical forests, increasingly stronger in temperate and boreal forests, and very strong in tundra ecosystems. The degree to which productivity is limited by the availability of N also varies within ecosystems. Thus spatial resolution in estimating exchanges of C between the atmosphere and the terrestrial biosphere is improved by modeling the linkage between C and N dynamics. We also perform a factorial experiment with TEM on temperate mixed forest in North America to evaluate the importance of considering interactions between C and N dynamics in the response of NPP to an elevated temperature of 2°C. With the C cycle uncoupled from the N cycle, NPP decreases primarily because of higher plant respiration. However, with the C and N cycles coupled, NPP increases because productivity that is due to increased N availability more than offsets the higher costs of plant respiration. Thus, to investigate how global change will affect biosphere-atmosphere interactions, process-based models need to consider linkages between the C and N cycles
Predicting the effects of climate change on water yield and forest production in the northeastern United States
Rapid and simultaneous changes in temperature, precipitation and the atmospheric concentration of CO2 are predicted to occur over the next century. Simple, well-validated models of ecosystem function are required to predict the effects of these changes. This paper describes an improved version of a forest carbon and water balance model (PnET-II) and the application of the model to predict stand- and regional-level effects of changes in temperature, precipitation and atmospheric CO2 concentration. PnET-II is a simple, generalized, monthly time-step model of water and carbon balances (gross and net) driven by nitrogen availability as expressed through foliar N concentration. Improvements from the original model include a complete carbon balance and improvements in the prediction of canopy phenology, as well as in the computation of canopy structure and photosynthesis. The model was parameterized and run for 4 forest/site combinations and validated against available data for water yield, gross and net carbon exchange and biomass production. The validation exercise suggests that the determination of actual water availability to stands and the occurrence or non-occurrence of soil-based water stress are critical to accurate modeling of forest net primary production (NPP) and net ecosystem production (NEP). The model was then run for the entire NewEngland/New York (USA) region using a 1 km resolution geographic information system. Predicted long-term NEP ranged from -85 to +275 g C m-2 yr-1 for the 4 forest/site combinations, and from -150 to 350 g C m-2 yr-1 for the region, with a regional average of 76 g C m-2 yr-1. A combination of increased temperature (+6*C), decreased precipitation (-15%) and increased water use efficiency (2x, due to doubling of CO2) resulted generally in increases in NPP and decreases in water yield over the region
Are Land-use Emissions Scalable with Increasing Corn Ethanol Mandates in the United States?
In response to the Renewable Fuel Standard, the U.S. transportation sector now consumes a substantial amount (13.3 billion gallons in 2010) of ethanol. A key motivation for these mandates is to expand the consumption of biofuels in road transportation to both reduce foreign oil dependency and to reduce greenhouse gas (GHG) emissions from the consumption of fossil fuels in transportation. In this paper, we present the impacts of several biofuels expansion scenarios for the U.S. in which scaled increases in the U.S. corn ethanol mandates are modeled to explore the scalability of GHG impacts. The impacts show both expected and surprising results. As expected, the area of land used to grow biofuel crops increases with the size of the policy in the U.S., and some land-use changes occur abroad due to trade in agricultural commodities. Because the land-use changes happen largely in the U.S., there is an increase in U.S. land-use emissions when natural lands are converted to agricultural use in the policy scenarios. Further, the emissions impacts in the U.S. and the rest of the world in these scenarios, including land-use emissions, scale in direct proportion to the size of the U.S. corn ethanol mandates. On the other hand, the land-use emissions that occur in the rest of the world are disproportionately larger per hectare of change due to conversions of more carbon-rich forests to cultivate crops and feed livestock.We gratefully acknowledge the financial support for this work from the U.S. Department of Energy, Office of Science under DE-FG02-94ER61937, the U.S. Environmental Protection Agency under XA-83600001-1 and XA-835055101-2, and other government, industry, and foundation sponsors of the Joint Program on the Science and Policy of Global Change
Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas Fluxes from Future Land-use Chage
http://globalchange.mit.edu/research/publications/2240The production of cellulosic biofuels may have a large influence on future land emissions of
greenhouse gases. These effects will vary across space and time depending on land-use policies,
trade, and variations in environmental conditions. We link an economic model with a terrestrial
biogeochemistry model to explore how projections of cellulosic biofuels production may influence
future land emissions of carbon and nitrous oxide. Tropical regions, particularly Africa and Latin
America, are projected to become major producers of biofuels. Most biofuels production is projected
to occur on lands that would otherwise be used to produce crops, livestock and timber. Biofuels
production leads to displacement and a redistribution of global food and timber production along
with a reduction in the trade of food products. Overall, biofuels production and the displacement of
other managed lands increase emissions of greenhouse gases primarily as a result of carbon
emissions from deforestation and nitrous oxide emissions from fertilizer applications to maximize
biofuel crop production in tropical regions. With optimal application of nitrogen fertilizers, cellulosic
biofuels production may enhance carbon sequestration in soils of some regions. As a result, the
relative importance of carbon emissions versus nitrous oxide emissions varies among regions.
Reductions in carbon sequestration by natural ecosystems caused by the expansion of biofuels have
minor effects on the global greenhouse gas budget and are more than compensated by concurrent
biofuel-induced reductions in nitrous oxide emissions from natural ecosystems. Land policies that
avoid deforestation and fertilizer applications, particularly in tropical regions, will have the largest
impact on minimizing land emissions of greenhouse gas from cellulosic biofuels production.This research was supported in part by the David and Lucile Packard Foundation to the MBL,
Department of Energy, Office of Science (BER) grants DE-FG02-94ER61937, DE-FG02-
93ER61677, DE-FG02-08ER64648, EPA grant XA-83240101, NSF grant BCS-0410344, and
the industrial and foundation sponsors of the MIT Joint Program on the Science and Policy of
Global Change
Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback
Climate change and permafrost thaw have been suggested to increase high latitude methane emissions that could potentially represent a strong feedback to the climate system. Using an integrated earth-system model framework, we examine the degradation of near-surface permafrost, temporal dynamics of inundation (lakes and wetlands) induced by hydro-climatic change, subsequent methane emission, and potential climate feedback. We find that increases in atmospheric CH[subscript 4] and its radiative forcing, which result from the thawed, inundated emission sources, are small, particularly when weighed against human emissions. The additional warming, across the range of climate policy and uncertainties in the climate-system response, would be no greater than 0.1 ° C by 2100. Further, for this temperature feedback to be doubled (to approximately 0.2 ° C) by 2100, at least a 25-fold increase in the methane emission that results from the estimated permafrost degradation would be required. Overall, this biogeochemical global climate-warming feedback is relatively small whether or not humans choose to constrain global emissions.United States. Dept. of Energy (Climate Change Prediction Program Grant DE-PS02-08ER08-05)United States. Dept. of Energy. Office of Science (Biological and Environmental Research
Potential net primary productivity in South America: application of a global model
We use a mechanistically based ecosystem simulation model to describe and analyze the spatial and temporal patterns of terrestrial net primary productivity (NPP) in South America. The Terrestrial Ecosystem Model (TEM) is designed to predict major carbon and nitrogen fluxes and pool sizes in terrestrial ecosystems at continental to global scales. Information from intensively studies field sites is used in combination with continental—scale information on climate, soils, and vegetation to estimate NPP in each of 5888 non—wetland, 0.5° latitude °0.5° longitude grid cells in South America, at monthly time steps. Preliminary analyses are presented for the scenario of natural vegetation throughout the continent, as a prelude to evaluating human impacts on terrestrial NPP. The potential annual NPP of South America is estimated to be 12.5 Pg/yr of carbon (26.3 Pg/yr of organic matter) in a non—wetland area of 17.0 ° 106 km2. More than 50% of this production occurs in the tropical and subtropical evergreen forest region. Six independent model runs, each based on an independently derived set of model parameters, generated mean annual NPP estimates for the tropical evergreen forest region ranging from 900 to 1510 g°m—2°yr—1 of carbon, with an overall mean of 1170 g°m—2°yr—1. Coefficients of variation in estimated annual NPP averaged 20% for any specific location in the evergreen forests, which is probably within the confidence limits of extant NPP measurements. Predicted rates of mean annual NPP in other types of vegetation ranged from 95 g°m—2°yr—1 in arid shrublands to 930 g°m@?yr—1 in savannas, and were within the ranges measured in empirical studies. The spatial distribution of predicted NPP was directly compared with estimates made using the Miami mode of Lieth (1975). Overall, TEM predictions were °10% lower than those of the Miami model, but the two models agreed closely on the spatial patterns of NPP in south America. Unlike previous models, however, TEM estimates NPP monthly, allowing for the evaluation of seasonal phenomena. This is an important step toward integration of ecosystem models with remotely sensed information, global climate models, and atmospheric transport models, all of which are evaluated at comparable spatial and temporal scales. Seasonal patterns of NPP in South America are correlated with moisture availability in most vegetation types, but are strongly influenced by seasonal differences in cloudiness in the tropical evergreen forests. On an annual basis, moisture availability was the factor that was correlated most strongly with annual NPP in South America, but differences were again observed among vegetation types. These results allow for the investigation and analysis of climatic controls over NPP at continental scales, within and among vegetation types, and within years. Further model validation is needed. Nevertheless, the ability to investigate NPP—environment interactions with a high spatial and temporal resolution at continental scales should prove useful if not essential for rigorous analysis of the potential effects of global climate changes on terrestrial ecosystems
Unintended Environmental Consequences of a Global Biofuels Program
Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but little research has been done on the consequences of an aggressive global biofuels program with advanced technologies using cellulosic feedstocks. Here, with simulation modeling, we explore two scenarios for cellulosic biofuels production and find that both could contribute substantially to future global-scale energy needs, but with significant unintended environmental consequences. As the land supply is squeezed to make way for vast areas of biofuels crops, the global landscape is defined by either the clearing of large swathes of natural forest, or the intensification of agricultural operations worldwide. The greenhouse gas implications of land-use conversion differ substantially between the two scenarios, but in both, numerous biodiversity hotspots suffer from serious habitat loss. Cellulosic biofuels may yet serve as a crucial wedge in the solution to the climate change problem, but must be deployed with caution so as not to jeopardize biodiversity, compromise ecosystems services, or undermine climate policy.This study received funding from the MIT Joint Program on the Science and Policy of Global Change, which is supported by a onsortium of government, industry and foundation sponsors
- …
