1,556 research outputs found
Evolving relativistic fluid spacetimes using pseudospectral methods and finite differencing
We present a new code for solving the coupled Einstein-hydrodynamics
equations to evolve relativistic, self-gravitating fluids. The Einstein field
equations are solved on one grid using pseudospectral methods, while the fluids
are evolved on another grid by finite differencing. We discuss implementation
details, such as the communication between the grids and the treatment of
stellar surfaces, and present code tests.Comment: To appear in the Proceedings of the Eleventh Marcel Grossmann Meetin
Black hole-neutron star mergers: effects of the orientation of the black hole spin
The spin of black holes in black hole-neutron star (BHNS) binaries can have a
strong influence on the merger dynamics and the postmerger state; a wide
variety of spin magnitudes and orientations are expected to occur in nature. In
this paper, we report the first simulations in full general relativity of BHNS
mergers with misaligned black hole spin. We vary the spin magnitude from a/m=0
to a/m=0.9 for aligned cases, and we vary the misalignment angle from 0 to 80
degrees for a/m=0.5. We restrict our study to 3:1 mass ratio systems and use a
simple Gamma-law equation of state. We find that the misalignment angle has a
strong effect on the mass of the postmerger accretion disk, but only for angles
greater than ~ 40 degrees. Although the disk mass varies significantly with
spin magnitude and misalignment angle, we find that all disks have very similar
lifetimes ~ 100ms. Their thermal and rotational profiles are also very similar.
For a misaligned merger, the disk is tilted with respect to the final black
hole's spin axis. This will cause the disk to precess, but on a timescale
longer than the accretion time. In all cases, we find promising setups for
gamma-ray burst production: the disks are hot, thick, and hyperaccreting, and a
baryon-clear region exists above the black hole.Comment: 15 pages, 13 figure
Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime
Simulations of neutron star-black hole (NSBH) binaries generally consider
black holes with masses in the range , where we expect to find
most stellar mass black holes. The existence of lower mass black holes,
however, cannot be theoretically ruled out. Low-mass black holes in binary
systems with a neutron star companion could mimic neutron star-neutron (NSNS)
binaries, as they power similar gravitational wave (GW) and electromagnetic
(EM) signals. To understand the differences and similarities between NSNS
mergers and low-mass NSBH mergers, numerical simulations are required. Here, we
perform a set of simulations of low-mass NSBH mergers, including systems
compatible with GW170817. Our simulations use a composition and temperature
dependent equation of state (DD2) and approximate neutrino transport, but no
magnetic fields. We find that low-mass NSBH mergers produce remnant disks
significantly less massive than previously expected, and consistent with the
post-merger outflow mass inferred from GW170817 for moderately asymmetric mass
ratio. The dynamical ejecta produced by systems compatible with GW170817 is
negligible except if the mass ratio and black hole spin are at the edge of the
allowed parameter space. That dynamical ejecta is cold, neutron-rich, and
surprisingly slow for ejecta produced during the tidal disruption of a neutron
star : . We also find that the final mass of the remnant
black hole is consistent with existing analytical predictions, while the final
spin of that black hole is noticeably larger than expected -- up to for our equal mass case
Orbiting binary black hole evolutions with a multipatch high order finite-difference approach
We present numerical simulations of orbiting black holes for around twelve
cycles, using a high-order multipatch approach. Unlike some other approaches,
the computational speed scales almost perfectly for thousands of processors.
Multipatch methods are an alternative to AMR (adaptive mesh refinement), with
benefits of simplicity and better scaling for improving the resolution in the
wave zone. The results presented here pave the way for multipatch evolutions of
black hole-neutron star and neutron star-neutron star binaries, where high
resolution grids are needed to resolve details of the matter flow
Unequal mass binary neutron star simulations with neutrino transport: Ejecta and neutrino emission
We present 12 new simulations of unequal mass neutron star mergers. The simulations are performed with the SpEC code, and utilize nuclear-theory-based equations of state and a two-moment gray neutrino transport scheme with an improved energy estimate based on evolving the number density. We model the neutron stars with the SFHo, LS220, and DD2 equations of state (EOS) and we study the neutrino and matter emission of all 12 models to search for robust trends between binary parameters and emission characteristics. We find that the total mass of the dynamical ejecta exceeds 0.01 M⊙ only for SFHo with weak dependence on the mass ratio across all models. We find that the ejecta have a broad electron fraction (Y_e) distribution (≈0.06–0.48), with mean 0.2. Y_e increases with neutrino irradiation over time, but decreases with increasing binary asymmetry. We also find that the models have ejecta with a broad asymptotic velocity distribution (≈0.05–0.7c). The average velocity lies in the range 0.2c−0.3c and decreases with binary asymmetry. Furthermore, we find that disk mass increases with binary asymmetry and stiffness of the EOS. The Y_e of the disk increases with softness of the EOS. The strongest neutrino emission occurs for the models with soft EOS. For (anti) electron neutrinos we find no significant dependence of the magnitude or angular distribution or neutrino luminosity with mass ratio. The heavier neutrino species have a luminosity dependence on mass ratio but an angular distribution which does not change with mass ratio
Radiation measurements from polar and geosynchronous satellites
The following topics are discussed: (1) cloud effects in climate determination; (2) annual variation in the global heat balance of the earth; (3) the accuracy of precipitation estimates made from passive microwave measurements from satellites; (4) seasonal oceanic precipitation frequencies; (5) determination of mesoscale temperature and moisture fields over land from satellite radiance measurements; and (6) Nimbus 6 scanning microwave spectrometer data evaluation for surface wind and pressure components in tropical storms
High-accuracy waveforms for binary black hole inspiral, merger, and ringdown
The first spectral numerical simulations of 16 orbits, merger, and ringdown
of an equal-mass non-spinning binary black hole system are presented.
Gravitational waveforms from these simulations have accumulated numerical phase
errors through ringdown of ~0.1 radian when measured from the beginning of the
simulation, and ~0.02 radian when waveforms are time and phase shifted to agree
at the peak amplitude. The waveform seen by an observer at infinity is
determined from waveforms computed at finite radii by an extrapolation process
accurate to ~0.01 radian in phase. The phase difference between this waveform
at infinity and the waveform measured at a finite radius of r=100M is about
half a radian. The ratio of final mass to initial mass is M_f/M = 0.95162 +-
0.00002, and the final black hole spin is S_f/M_f^2=0.68646 +- 0.00004.Comment: 15 pages, 11 figures; New figure added, text edited to improve
clarity, waveform made availabl
Low mass binary neutron star mergers : gravitational waves and neutrino emission
Neutron star mergers are among the most promising sources of gravitational
waves for advanced ground-based detectors. These mergers are also expected to
power bright electromagnetic signals, in the form of short gamma-ray bursts,
infrared/optical transients, and radio emission. Simulations of these mergers
with fully general relativistic codes are critical to understand the merger and
post-merger gravitational wave signals and their neutrinos and electromagnetic
counterparts. In this paper, we employ the SpEC code to simulate the merger of
low-mass neutron star binaries (two neutron stars) for a set of
three nuclear-theory based, finite temperature equations of state. We show that
the frequency peaks of the post-merger gravitational wave signal are in good
agreement with predictions obtained from simulations using a simpler treatment
of gravity. We find, however, that only the fundamental mode of the remnant is
excited for long periods of time: emission at the secondary peaks is damped on
a millisecond timescale in the simulated binaries. For such low-mass systems,
the remnant is a massive neutron star which, depending on the equation of
state, is either permanently stable or long-lived. We observe strong
excitations of l=2, m=2 modes, both in the massive neutron star and in the form
of hot, shocked tidal arms in the surrounding accretion torus. We estimate the
neutrino emission of the remnant using a neutrino leakage scheme and, in one
case, compare these results with a gray two-moment neutrino transport scheme.
We confirm the complex geometry of the neutrino emission, also observed in
previous simulations with neutrino leakage, and show explicitly the presence of
important differences in the neutrino luminosity, disk composition, and outflow
properties between the neutrino leakage and transport schemes.Comment: Accepted by PRD; 23 pages; 24 figures; 4 table
Post-merger evolution of a neutron star-black hole binary with neutrino transport
We present a first simulation of the post-merger evolution of a black
hole-neutron star binary in full general relativity using an energy-integrated
general relativistic truncated moment formalism for neutrino transport. We
describe our implementation of the moment formalism and important tests of our
code, before studying the formation phase of a disk after a black hole-neutron
star merger. We use as initial data an existing general relativistic simulation
of the merger of a neutron star of 1.4 solar mass with a black hole of 7 solar
mass and dimensionless spin a/M=0.8. Comparing with a simpler leakage scheme
for the treatment of the neutrinos, we find noticeable differences in the
neutron to proton ratio in and around the disk, and in the neutrino luminosity.
We find that the electron neutrino luminosity is much lower in the transport
simulations, and that the remnant is less neutron-rich. The spatial
distribution of the neutrinos is significantly affected by relativistic
effects. Over the short timescale evolved, we do not observe purely
neutrino-driven outflows. However, a small amount of material (3e-4Msun) is
ejected in the polar region during the circularization of the disk. Most of
that material is ejected early in the formation of the disk, and is fairly
neutron rich. Through r-process nucleosynthesis, that material should produce
high-opacity lanthanides in the polar region, and could thus affect the
lightcurve of radioactively powered electromagnetic transients. We also show
that by the end of the simulation, while the bulk of the disk is neutron-rich,
its outer layers have a higher electron fraction. As that material would be the
first to be unbound by disk outflows on longer timescales, the changes in Ye
experienced during the formation of the disk could have an impact on the
nucleosynthesis outputs from neutrino-driven and viscously-driven outflows.
[Abridged]Comment: 29 pages, 25 figure
Black hole-neutron star mergers for 10 solar mass black holes
General relativistic simulations of black hole-neutron star mergers have
currently been limited to low-mass black holes (less than 7 solar mass), even
though population synthesis models indicate that a majority of mergers might
involve more massive black holes (10 solar mass or more). We present the first
general relativistic simulations of black hole-neutron star mergers with 10
solar mass black holes. For massive black holes, the tidal forces acting on the
neutron star are usually too weak to disrupt the star before it reaches the
innermost stable circular orbit of the black hole. Varying the spin of the
black hole in the range a/M = 0.5-0.9, we find that mergers result in the
disruption of the star and the formation of a massive accretion disk only for
large spins a/M>0.7-0.9. From these results, we obtain updated constraints on
the ability of BHNS mergers to be the progenitors of short gamma-ray bursts as
a function of the mass and spin of the black hole. We also discuss the
dependence of the gravitational wave signal on the black hole parameters, and
provide waveforms and spectra from simulations beginning 7-8 orbits before
merger.Comment: 11 pages, 11 figures - Updated to match published versio
- …
