36 research outputs found
From Alkanes to Carboxylic Acids: Terminal Oxygenation by a Fungal Peroxygenase
5 páginas.-- 4 figuras.-- 24 referencias.-- Supporting information for this article can be found under:
http://dx.doi.org/10.1002/anie.201604915.Este artículo está en abierto en el enlace de la revista y puede descargar el pdf. originalA new heme–thiolate peroxidase catalyzes the hydroxylation of n-alkanes at the terminal position—a challenging reaction in organic chemistry—with H2O2 as the only cosubstrate. Besides the primary product, 1-dodecanol, the conversion of dodecane yielded dodecanoic, 12-hydroxydodecanoic, and 1,12-dodecanedioic acids, as identified by GC–MS. Dodecanal could be detected only in trace amounts, and 1,12-dodecanediol was not observed, thus suggesting that dodecanoic acid is the branch point between mono- and diterminal hydroxylation. Simultaneously, oxygenation was observed at other hydrocarbon chain positions (preferentially C2 and C11). Similar results were observed in reactions of tetradecane. The pattern of products formed, together with data on the incorporation of 18O from the cosubstrate H218O2, demonstrate that the enzyme acts as a peroxygenase that is able to catalyze a cascade of mono- and diterminal oxidation reactions of long-chain n-alkanes to give carboxylic acids.The research was financed by the project NCN DEC-2012/07/B/ST5/02448 and the research program P1-0055 of the Slovenian Research Agency. Authors thank Prof. Mojca Cepic and Prof. Hideo Takezoe for valuable discussions.Peer reviewe
Vesicle-based cell-free synthesis of short and long unspecific peroxygenases
Unspecific peroxygenases (UPOs, EC 1.11.2.1) are fungal enzymes that catalyze the oxyfunctionalization of non-activated hydrocarbons, making them valuable biocatalysts. Despite the increasing interest in UPOs that has led to the identification of thousands of putative UPO genes, only a few of these have been successfully expressed and characterized. There is currently no universal expression system in place to explore their full potential. Cell-free protein synthesis has proven to be a sophisticated technique for the synthesis of difficult-to-express proteins. In this work, we aimed to establish an insect-based cell-free protein synthesis (CFPS) platform to produce UPOs. CFPS relies on translationally active cell lysates rather than living cells. The system parameters can thus be directly manipulated without having to account for cell viability, thereby making it highly adaptable. The insect-based lysate contains translocationally active, ER-derived vesicles, called microsomes. These microsomes have been shown to allow efficient translocation of proteins into their lumen, promoting post-translational modifications such as disulfide bridge formation and N-glycosylations. In this study the ability of a redox optimized, vesicle-based, eukaryotic CFPS system to synthesize functional UPOs was explored. The influence of different reaction parameters as well as the influence of translocation on enzyme activity was evaluated for a short UPO from Marasmius rotula and a long UPO from Agrocybe aegerita. The capability of the CFPS system described here was demonstrated by the successful synthesis of a novel UPO from Podospora anserina, thus qualifying CFPS as a promising tool for the identification and evaluation of novel UPOs and variants thereof
Recommended from our members
Singlet-Oxygen Generation by Peroxidases and Peroxygenases for Chemoenzymatic Synthesis
Singlet oxygen is a reactive oxygen species undesired in living cells but a rare and valuable reagent in chemical synthesis. We present a fluorescence spectroscopic analysis of the singlet-oxygen formation activity of commercial peroxidases and novel peroxygenases. Singlet-oxygen sensor green (SOSG) is used as fluorogenic singlet oxygen trap. Establishing a kinetic model for the reaction cascade to the fluorescent SOSG endoperoxide permits a kinetic analysis of enzymatic singlet-oxygen formation. All peroxidases and peroxygenases show singlet-oxygen formation. No singlet oxygen activity could be found for any catalase under investigation. Substrate inhibition is observed for all reactive enzymes. The commercial dye-decolorizing peroxidase industrially used for dairy bleaching shows the highest singlet-oxygen activity and the lowest inhibition. This enzyme was immobilized on a textile carrier and successfully applied for a chemical synthesis. Here, ascaridole was synthesized via enzymatically produced singlet oxygen. © 2020 Wiley-VCH Gmb
Engineering a Highly Regioselective Fungal Peroxygenase for the Synthesis of Hydroxy Fatty Acids
The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity. While crystallographic soaking experiments and molecular dynamic simulations shed light on this unique oxidation pattern, the selective biocatalyst was produced by Pichia pastoris at 0.4 g L−1 in a fed-batch bioreactor and used in the preparative synthesis of 1.4 g of (ω-1)-hydroxytetradecanoic acid with 95 % regioselectivity and 83 % ee for the S enantiomer.This work was supported by the European Union Project grant H2020-BBI-PPP-2015-2-720297-ENZOX2; the Spanish projects PID2019-106166RB-100-OXYWAVE, PID2020-118968RB-100-LILI, PID2021-123332OB-C21 and PID2019-107098RJ-I00, funded by the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (AEI)/doi: 10.13039/501100011033/; the “Comunidad de Madrid” Synergy CAM project Y2018/BIO-4738-EVOCHIMERA-CM; the Generalitat Valenciana projects CIPROM/2021/079-PROMETEO and SEJI/2020/007; and the PIE-CSIC projects PIE-202040E185 and PIE-201580E042. P.G.d.S. thanks the Ministry of Science, Innovation and Universities (Spain) for her FPI scholarship (BES-2017-080040) and the Ministry of Science and Innovation for her contract as part of the PTQ2020-011037 project funded by MCIN/AEI/10.13039/501100011033 within the NextGenerationEU/PRTR. D.G.-P. thanks Juan de la Cierva Incorporación contract Ref. No.: IJC2020-043725-I, funded by MCIN/AEI/10.13039/501100011033, and the EU NextGenerationEU/PRTR program. K.Ś. thanks to Ministerio de Ciencia e Innovación and Fondo Social Europeo for a Ramón y Cajal contract (Ref. RYC2020-030596-I). We thank the Synchrotron Radiation Source at Alba (Barcelona, Spain) for assistance with the BL13-XALOC beamline
Unspezifische Peroxygenasen — Oxyfunktionalisierung außerhalb der Pilzhyphe
AbstractUnspecific peroxygenases (UPOs) secreted by fungi represent an intriguing enzyme type that selectively transfers peroxide-borne oxygen with high efficiency to diverse substrates including unactivated hydrocarbons. They contain a cysteine-ligated heme and catalyze hydroxylation, epoxidation, dealkylation, deacylation as well as hetero atom, halide and one-electron oxidations. Substrate spectra of UPOs resemble both those of P450 monooxygenases and heme peroxidases.</jats:p
Synthesis of cyclophosphamide metabolites by a peroxygenase from Marasmius rotula for toxicological studies on human cancer cells
AbstractCyclophosphamide (CPA) represents a widely used anti-cancer prodrug that is converted by liver cytochrome P450 (CYP) enzymes into the primary metabolite 4-hydroxycyclophosphamide (4-OH-CPA), followed by non-enzymatic generation of the bioactive metabolites phosphoramide mustard and acrolein. The use of human drug metabolites as authentic standards to evaluate their toxicity is essential for drug development. However, the chemical synthesis of 4-OH-CPA is complex and leads to only low yields and undesired side products. In past years, fungal unspecific peroxygenases (UPOs) have raised to powerful biocatalysts. They can exert the identical selective oxyfunctionalization of organic compounds and drugs as known for CYP enzymes with hydrogen peroxide being used as sole cosubstrate. Herein, we report the efficient enzymatic hydroxylation of CPA using the unspecific peroxygenase from Marasmius rotula (MroUPO) in a simple reaction design. Depending on the conditions used the primary liver metabolite 4-OH-CPA, its tautomer aldophosphamide (APA) and the overoxidized product 4-ketocyclophosphamide (4-keto-CPA) could be obtained. Using a kinetically controlled approach 4-OH-CPA was isolated with a yield of 32% (purity > 97.6%). Two human cancer cell lines (HepG2 and MCF-7) were treated with purified 4-OH-CPA produced by MroUPO (4-OH-CPAUPO). 4-OH-CPAUPO–induced cytotoxicity as measured by a luminescent cell viability assay and its genotoxicity as measured by γH2AX foci formation was not significantly different to the commercially available standard. The high yield of 4-OH-CPAUPO and its biological activity demonstrate that UPOs can be efficiently used to produce CYP-specific drug metabolites for pharmacological assessment.</jats:p
Peroxide-Mediated Oxygenation of Organic Compounds by Fungal Peroxygenases
Unspecific peroxygenases (UPOs), whose sequences can be found in the genomes of thousands of filamentous fungi, many yeasts and certain fungus-like protists, are fascinating biocatalysts that transfer peroxide-borne oxygen (from H2O2 or R-OOH) with high efficiency to a wide range of organic substrates, including less or unactivated carbons and heteroatoms. A twice-proline-flanked cysteine (PCP motif) typically ligates the heme that forms the heart of the active site of UPOs and enables various types of relevant oxygenation reactions (hydroxylation, epoxidation, subsequent dealkylations, deacylation, or aromatization) together with less specific one-electron oxidations (e.g., phenoxy radical formation). In consequence, the substrate portfolio of a UPO enzyme always combines prototypical monooxygenase and peroxidase activities. Here, we briefly review nearly 20 years of peroxygenase research, considering basic mechanistic, molecular, phylogenetic, and biotechnological aspects.</jats:p
Peroxide-Mediated Oxygenation of Organic Compounds by Fungal Peroxygenases
Unspecific peroxygenases (UPOs), whose sequences can be found in the genomes of thousands of filamentous fungi, many yeasts and certain fungus-like protists, are fascinating biocatalysts that transfer peroxide-borne oxygen (from H2O2 or R-OOH) with high efficiency to a wide range of organic substrates, including less or unactivated carbons and heteroatoms. A twice-proline-flanked cysteine (PCP motif) typically ligates the heme that forms the heart of the active site of UPOs and enables various types of relevant oxygenation reactions (hydroxylation, epoxidation, subsequent dealkylations, deacylation, or aromatization) together with less specific one-electron oxidations (e.g., phenoxy radical formation). In consequence, the substrate portfolio of a UPO enzyme always combines prototypical monooxygenase and peroxidase activities. Here, we briefly review nearly 20 years of peroxygenase research, considering basic mechanistic, molecular, phylogenetic, and biotechnological aspects
Selective Oxygenation of Ionones and Damascones by Fungal Peroxygenases
9 páginas.- 6 figuras.- 5 tablas.- 37 referencias.- The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jafc.0c01019Apocarotenoids are among the most highly valued fragrance constituents, being also appreciated as synthetic building blocks. This work shows the ability of unspecific peroxygenases (UPOs, EC1.11.2.1) from several fungi, some of them being described recently, to catalyze the oxyfunctionalization of α- and β-ionones and α- and β-damascones. Enzymatic reactions yielded oxygenated products such as hydroxy, oxo, carboxy, and epoxy derivatives that are interesting compounds for the flavor and fragrance and pharmaceutical industries. Although variable regioselectivity was observed depending on the substrate and enzyme, oxygenation was preferentially produced at the allylic position in the ring, being especially evident in the reaction with α-ionone, forming 3-hydroxy-α-ionone and/or 3-oxo-α-ionone. Noteworthy were the reactions with damascones, in the course of which some UPOs oxygenated the terminal position of the side chain, forming oxygenated derivatives (i.e., the corresponding alcohol, aldehyde, and carboxylic acid) at C-10, which were predominant in the Agrocybe aegerita UPO reactions, and first reported here.This work was supported by the EnzOx2 (H2020-BBI-PPP-2015-2-1-720297) EU-project and the CSIC (201740E071) project.Peer reviewe
