4,194 research outputs found
Water ice in the dark dune spots of Richardson crater on Mars
In this study we assess the presence, nature and properties of ices - in
particular water ice - that occur within these spots using HIRISE and CRISM
observations, as well as the LMD Global Climate Model. Our studies focus on
Richardson crater (72{\deg}S, 179{\deg}E) and cover southern spring and summer
(LS 175{\deg} - 17 341{\deg}). Three units have been identified of these spots:
dark core, gray ring and bright halo. Each unit show characteristic changes as
the season progress. In winter, the whole area is covered by CO2 ice with H2O
ice contamination. Dark spots form during late winter and early spring. During
spring, the dark spots are located in a 10 cm thick depression compared to the
surrounding bright ice-rich layer. They are spectrally characterized by weak
CO2 ice signatures that probably result from spatial mixing of CO2 ice rich and
ice free regions within pixels, and from mixing of surface signatures due to
aerosols scattering. The bright halo shaped by winds shows stronger CO2
absorptions than the average ice covered terrain, which is consistent with a
formation process involving CO2 re-condensation. According to spectral,
morphological and modeling considerations, the gray ring is composed of a thin
layer of a few tens of {\mu}m of water ice. Two sources/processes could
participate to the enrichment of water ice in the gray ring unit: (i) water ice
condensation at the surface in early fall (prior to the condensation of a CO2
rich winter layer) or during winter time (due to cold trapping of the CO2
layer); (ii) ejection of dust grains surrounded by water ice by the geyser
activity responsible for the dark spot. In any case, water ice remains longer
in the gray ring unit after the complete sublimation of the CO2. Finally, we
also looked for liquid water in the near-IR CRISM spectra using linear unmixing
modeling but found no conclusive evidence for it
The direct synthesis of crosslinked polymeric azomethines
Char yields of synthesized crosslinked polymeric azomethine
Sagittarius dwarf spheroidal galaxy observed by H.E.S.S
Dwarf spheroidal galaxies are characterized by a large measured mass-to-light
ratio and are not expected to be the site of high-luminosity non-thermal
high-energy gamma-ray emissions. Therefore they are among the most promising
candidates for indirect searches of dark matter particle annihilation signals
in gamma rays. The Sagittarius dwarf spheroidal galaxy has been regularly
observed by the High Energy Stereoscopic System (H.E.S.S.) of Cherenkov
telescopes for more than 90 hours, searching for TeV gamma-ray emission from
annihilation of dark matter particles. In absence of a significant signal, new
constraints on the annihilation crosssection of the dark matter particles
applicable for Majorana Weakly Interacting Massive Particles (WIMPs) are
derived.Comment: In Proceedings of the 33rd International Cosmic Ray Conference
(ICRC2013), Rio de Janeiro (Brazil
Radiometric performance of AVIRIS: Assessment for an arid region geologic target
Data from several AVIRIS flight lines were examined to assess instrument stability and response. Both scene and in-flight calibration data were analyzed statistically. The data clearly indicates that, although the instrument output was noisy and unstable at the time of the data acquisition, valuable spectral signatures can still be extracted and analyzed. Some first order calibration corrections can be performed by forcing internal consistency within the data. AVIRIS data are delivered in band-interleaved-by-line format, but high efficiency routines were developed which access the data as either image or spectral planes and enable effective statistical and visual examination of both AVIRIS scenes and ancillary files. Two methods were used to extract spectral information from segment 4 of the Kelso Dunes flight. Both successfully identified at least three distinct spectral signatures, but neither has positively identified a specific material
Association between health insurance literacy and avoidance of health care services owing to cost
Importance: Navigating health insurance and health care choices requires considerable health insurance literacy. Although recommended preventive services are exempt from out-of-pocket costs under the Affordable Care Act, many people may remain unaware of this provision and its effect on their required payment. Little is known about the association between individuals\u27 health insurance literacy and their use of preventive or nonpreventive health care services.
Objective: To assess the association between health insurance literacy and self-reported avoidance of health care services owing to cost.
Design, Setting, and Participants: In this survey study, a US national, geographically diverse, nonprobability sample of 506 US residents aged 18 years or older with current health insurance coverage was recruited to participate in an online survey between February 22 and 23, 2016.
Main Outcomes and Measures: The validated 21-item Health Insurance Literacy Measure (HILM) assessed individuals\u27 self-rated confidence in selecting and using health insurance (score range, 0-84, with higher scores indicating greater levels of health insurance literacy). Dependent variables included delayed or foregone preventive and nonpreventive services in the past 12 months owing to perceived costs, and preventive and nonpreventive use of services. Covariates included age, sex, race/ethnicity, income, educational level, high-deductible health insurance plan, health literacy, numeracy, and chronic health conditions. Analyses included descriptive statistics and bivariate and multivariable logistic regression.
Results: A total of 506 of 511 participants who began the survey completed it (participation rate, 99.0%). Of the 506 participants, 339 (67.0%) were younger than 35 years (mean [SD] age, 34 [10.4] years), 228 (45.1%) were women, 406 of 504 who reported race (80.6%) were white, and 245 (48.4%) attended college for 4 or more years. A total of 228 participants (45.1%) had 1 or more chronic health condition, 361 of 500 (72.2%) who responded to the survey item had seen a physician in the outpatient setting in the past 12 months, and 446 of the 501 (89.0%) who responded to the survey item had their health insurance plan for 12 or more months. One hundred fifty respondents (29.6%) reported having delayed or foregone care because of cost. The mean (SD) HILM score was 63.5 (12.3). In multivariable logistic regression, each 12-point increase in HILM score was associated with a lower likelihood of both delayed or foregone preventive care (adjusted odds ratio [aOR], 0.61; 95% CI, 0.48-0.78) and delayed or foregone nonpreventive care (aOR, 0.71; 95% CI, 0.55-0.91).
Conclusions and Relevance: This study\u27s findings suggest that lower health insurance literacy may be associated with greater avoidance of both preventive and nonpreventive services. It appears that to improve appropriate use of recommended health care services, including preventive health services, clinicians, health plans, and policymakers may need to communicate health insurance concepts in accessible ways regardless of individuals\u27 health insurance literacy. Plain language communication may be able to improve patients\u27 understanding of services exempt from out-of-pocket costs
Experimental simulations of the May 18, 1980 directed blast at Mount St. Helens, WA
The 1980 directed blast at Mount St. Helens erupted from a high-pressure magma chamber into atmospheric conditions at a pressure ratio of ~150:1, producing a high-velocity dusty gas flow. Decompression from even modestly high pressure ratios (>2:1) produces supersonic flow and thus, this event was modeled as a supersonic underexpanded jet by Kieffer (1981). Steady-state underexpanded jets have a complex geometrical structure in which there is an abrupt, stationary, normal shock wave, called the Mach disk shock. For steady flow, a log-linear relationship between pressure ratio and Mach disk standoff distance, known as the Ashkenas-Sherman relation, is valid for pressure ratios above 15:1 given by x/D=0.67(Rp)^(0.5) where Rp is the pressure ratio, and x/D is the standoff distance normalized to vent diameter. The effects of unsteady discharge from a finite reservoir and application to Mount St. Helens have not been previously investigated. In order to simulate the blast, we use laboratory and numerical experiments of unsteady flow from a finite reservoir to examine jet structure. The reservoir and test section correspond to the magma chamber and ambient atmospheric conditions at Mount St. Helens respectively. We completed a series of laboratory experiments in which we varied the initial pressure ratio, reservoir length and reservoir gas (nitrogen, helium). The numerical simulations show that the Mach disk initially forms close to the vent and then travels downstream to its equilibrium position. The experiments show that as the reservoir pressure continuously decreases during the venting, or “blowdown”, the Mach disk shock continuously moves back toward the reservoir after its formation at the equilibrium position. Results of these experiments indicate that above a pressure ratio of 15:1, the Mach disk standoff distance for unsteady flow falls on the empirical Ashkenas-Sherman curve for steady flow. We present a new relation for the location of the Mach disk shock for pressure ratios below 15:1 given by x/D=0.41(Rp)^(0.66). The results indicate no dependence of the normalized Mach disk location on the finiteness of the reservoir. These results may be of interest not only for high pressure eruptions such as Mount St. Helens, but to low pressure steam eruptions as well because helium is a good analog to steam
Snapping Graph Drawings to the Grid Optimally
In geographic information systems and in the production of digital maps for
small devices with restricted computational resources one often wants to round
coordinates to a rougher grid. This removes unnecessary detail and reduces
space consumption as well as computation time. This process is called snapping
to the grid and has been investigated thoroughly from a computational-geometry
perspective. In this paper we investigate the same problem for given drawings
of planar graphs under the restriction that their combinatorial embedding must
be kept and edges are drawn straight-line. We show that the problem is NP-hard
for several objectives and provide an integer linear programming formulation.
Given a plane graph G and a positive integer w, our ILP can also be used to
draw G straight-line on a grid of width w and minimum height (if possible).Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Flow of supersonic jets across flat plates: Implications for ground-level flow from volcanic blasts
We report on laboratory experiments examining the interaction of a jet from an overpressurized reservoir with a canonical ground surface to simulate lateral blasts at volcanoes such as the 1980 blast at Mount St. Helens. These benchmark experiments test the application of supersonic jet models to simulate the flow of volcanic jets over a lateral topography. The internal shock structure of the free jet is modified such that the Mach disk shock is elevated above the surface. In elevation view, the width of the shock is reduced in comparison with a free jet, while in map view the dimensions are comparable. The distance of the Mach disk shock from the vent is in good agreement with free jet data and can be predicted with existing theory. The internal shock structures can interact with and penetrate the boundary layer. In the shock-boundary layer interaction, an oblique shock foot is present in the schlieren images and a distinctive ground signature is evident in surface measurements. The location of the oblique shock foot and the surface demarcation are closely correlated with the Mach disk shock location during reservoir depletion, and therefore, estimates of a ground signature in a zone devastated by a blast can be based on the calculated shock location from free jet theory. These experiments, combined with scaling arguments, suggest that the imprint of the Mach disk shock on the ground should be within the range of 4–9 km at Mount St. Helens depending on assumed reservoir pressure and vent dimensions
- …
