38,934 research outputs found

    Comparison of DC and SRF Photoemission Guns For High Brightness High Average Current Beam Production

    Full text link
    A comparison of the two most prominent electron sources of high average current high brightness electron beams, DC and superconducting RF photoemission guns, is carried out using a large-scale multivariate genetic optimizer interfaced with space charge simulation codes. The gun geometry for each case is varied concurrently with laser pulse shape and parameters of the downstream beamline elements of the photoinjector to obtain minimum emittance as a function of bunch charge. Realistic constraints are imposed on maximum field values for the two gun types. The SRF and DC gun emittances and beam envelopes are compared for various values of photocathode thermal emittance. The performance of the two systems is found to be largely comparable provided low intrinsic emittance photocathodes can be employed

    Earthquake Early Warning and Beyond: Systems Challenges in Smartphone-based Seismic Network

    Full text link
    Earthquake Early Warning (EEW) systems can effectively reduce fatalities, injuries, and damages caused by earthquakes. Current EEW systems are mostly based on traditional seismic and geodetic networks, and exist only in a few countries due to the high cost of installing and maintaining such systems. The MyShake system takes a different approach and turns people's smartphones into portable seismic sensors to detect earthquake-like motions. However, to issue EEW messages with high accuracy and low latency in the real world, we need to address a number of challenges related to mobile computing. In this paper, we first summarize our experience building and deploying the MyShake system, then focus on two key challenges for smartphone-based EEW (sensing heterogeneity and user/system dynamics) and some preliminary exploration. We also discuss other challenges and new research directions associated with smartphone-based seismic network.Comment: 6 pages, conference paper, already accepted at hotmobile 201

    Gauge Boson Exchange in AdSd+1AdS_{d+1}

    Get PDF
    We study the amplitude for exchange of massless gauge bosons between pairs of massive scalar fields in Anti-de Sitter space. In the AdS/CFT correspondence this amplitude describes the contribution of conserved flavor symmetry currents to 4-point functions of scalar operators in the boundary conformal theory. A concise, covariant (Y2K-compatible) derivation of the gauge boson propagator in \AdS_{d+1} is given. Techniques are developed to calculate the two bulk integrals over AdS space leading to explicit expressions or convenient, simple integral representations for the amplitude. The amplitude contains leading power and sub-leading logarithmic singularities in the gauge boson channel and leading logarithms in the crossed channel. The new methods of this paper are expected to have other applications in the study of the Maldacena conjecture.Comment: Corrections in (3.17) and (4.23); version to be published in Nuclear Physics B; 22 pages, 1 figure, using Plain TeX and BoxedEPS macros; email to [email protected]

    Effect of laser-welding parameters on the heat input and weld-bead profile

    Get PDF
    Laser butt-welding of medium carbon steel was investigated using CW 1.5 kW CO2 laser. The effect of laser power (1.2 - 1.43 kW), welding speed (30 - 70 cm/min) and focal point position (-2.5 - 0 mm) on the heat input and the weld-bead geometry (i.e. penetration (P), welded zone width (W) and heat affected zone width (WHAZ)) was investigated using Response Surface Methodology (RSM). The experimental plan was based on Box-Behnken design. Linear and quadratic polynomial equations for predicting the heat input and the weld-bead geometry were developed. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used. It is suggested that regression equations can be used to find optimum welding conditions for the desired criteria

    A Classification of Infographics

    Get PDF
    Classifications are useful for describing existing phenomena and guiding further investigation. Several classifications of diagrams have been proposed, typically based on analytical rather than empirical methodologies. A notable exception is the work of Lohse and his colleagues, published in Communications of the ACM in December 1994. The classification of diagrams that Lohse proposed was derived from bottom-up grouping data collected from sixteen participants and based on 60 diagrams. Mean values on ten Likert-scales were used to predict diagram class. We follow a similar methodology to Lohse, using real-world infographics (i.e. embellished data charts) as our stimuli. We propose a structural classification of infographics, and determine whether infographics class can be predicted from values on Likert scales

    Exploring Oxidation in the Remote Free Troposphere: Insights from Atmospheric Tomography (ATom)

    Get PDF
    Earth's atmosphere oxidizes the greenhouse gas methane and other gases, thus determining their lifetimes and oxidation products. Much of this oxidation occurs in the remote, relatively clean free troposphere above the planetary boundary layer, where the oxidation chemistry is thought to be much simpler and better understood than it is in urban regions or forests. The NASA airborne Atmospheric Tomography study (ATom) was designed to produce cross sections of the detailed atmospheric composition in the remote atmosphere over the Pacific and Atlantic Oceans during four seasons. As part of the extensive ATom data set, measurements of the atmosphere's primary oxidant, hydroxyl (OH), and hydroperoxyl (HO₂) are compared to a photochemical box model to test the oxidation chemistry. Generally, observed and modeled median OH and HO₂ agree to with combined uncertainties at the 2σ confidence level, which is ~±40%. For some seasons, this agreement is within ~±20% below 6 km altitude. While this test finds no significant differences, OH observations increasingly exceeded modeled values at altitudes above 8 km, becoming ~35% greater, which is near the combined uncertainties. Measurement uncertainty and possible unknown measurement errors complicate tests for unknown chemistry or incorrect reaction rate coefficients that would substantially affect the OH and HO₂ abundances. Future analysis of detailed comparisons may yield additional discrepancies that are masked in the median values

    Adapting Sequence Models for Sentence Correction

    Full text link
    In a controlled experiment of sequence-to-sequence approaches for the task of sentence correction, we find that character-based models are generally more effective than word-based models and models that encode subword information via convolutions, and that modeling the output data as a series of diffs improves effectiveness over standard approaches. Our strongest sequence-to-sequence model improves over our strongest phrase-based statistical machine translation model, with access to the same data, by 6 M2 (0.5 GLEU) points. Additionally, in the data environment of the standard CoNLL-2014 setup, we demonstrate that modeling (and tuning against) diffs yields similar or better M2 scores with simpler models and/or significantly less data than previous sequence-to-sequence approaches.Comment: EMNLP 201

    Accurate Microwave Control and Real-Time Diagnostics of Neutral Atom Qubits

    Full text link
    We demonstrate accurate single-qubit control in an ensemble of atomic qubits trapped in an optical lattice. The qubits are driven with microwave radiation, and their dynamics tracked by optical probe polarimetry. Real-time diagnostics is crucial to minimize systematic errors and optimize the performance of single-qubit gates, leading to fidelities of 0.99 for single-qubit pi rotations. We show that increased robustness to large, deliberately introduced errors can be achieved through the use of composite rotations. However, during normal operation the combination of very small intrinsic errors and additional decoherence during the longer pulse sequences precludes any significant performance gain in our current experiment.Comment: 9 pages, 7 figure
    corecore