1,388 research outputs found

    Sidorenko's conjecture for higher tree decompositions

    Get PDF
    This is a companion note to our paper 'Some advances on Sidorenko's conjecture', elaborating on a remark in that paper that the approach which proves Sidorenko's conjecture for strongly tree-decomposable graphs may be extended to a broader class, comparable to that given in work of Szegedy, through further iteration.Comment: 7 pages, unpublished not

    String compactification, QCD axion and axion-photon-photon coupling

    Full text link
    It is pointed out that there exist a few problems to be overcome toward an observable sub-eV QCD axion in superstring compactification. We give a general expression for the axion decay constant. For a large domain wall number NDWN_{DW}, the axion decay constant can be substantially lowered from a generic value of a scalar singlet VEV. The Yukawa coupling structure in the recent Z12IZ_{12-I} model is studied completely, including the needed nonrenormalizable terms toward realistic quark and lepton masses. In this model we find an approximate global symmetry and vacuum so that a QCD axion results but its decay constant is at the GUT scale. The axion-photon-photon coupling is calculated for a realistic vacuum satisfying the quark and lepton mass matrix conditions. It is the first time calculation of caγγc_{a\gamma\gamma} in realistic string compactifications: caγγ=5/31.930.26c_{a\gamma\gamma}={5/3}-1.93\simeq -0.26.Comment: 33 pages, 2 figures, JHEP format, some errors in the superpotential couplings are corrected and the following discussions are changed correspondingl

    F-theory, GUTs, and the Weak Scale

    Full text link
    In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the mu term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare mu and B mu terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value mu ~ 10^2 - 10^3 GeV when the hidden sector scale of supersymmetry breaking is F^(1/2) ~ 10^(8.5) GeV. Further, the B mu problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f_a ~ M_(GUT) * mu / L, where L ~ 10^5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio \mu / L ~ M_(GUT)/M_(pl) ~ 10^(-3). We find f_a ~ 10^12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10^1 - 10^2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10^2 - 10^3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tan(beta) ~ 30 +/- 7.Comment: v3: 94 pages, 9 figures, clarification of Fayet-Polonyi model and instanton corrections to axion potentia

    An Empirical Analysis of Dynamic Multiscale Hedging using Wavelet Decomposition

    Get PDF
    This paper investigates the hedging effectiveness of a dynamic moving window OLS hedging model, formed using wavelet decomposed time-series. The wavelet transform is applied to calculate the appropriate dynamic minimum-variance hedge ratio for various hedging horizons for a number of assets. The effectiveness of the dynamic multiscale hedging strategy is then tested, both in- and out-of-sample, using standard variance reduction and expanded to include a downside risk metric, the time horizon dependent Value-at-Risk. Measured using variance reduction, the effectiveness converges to one at longer scales, while a measure of VaR reduction indicates a portion of residual risk remains at all scales. Analysis of the hedge portfolio distributions indicate that this unhedged tail risk is related to excess portfolio kurtosis found at all scales.Comment: To Appear: Journal of Futures Market

    Phenomenology of a Pseudo-Scalar Inflaton: Naturally Large Nongaussianity

    Full text link
    Many controlled realizations of chaotic inflation employ pseudo-scalar axions. Pseudo-scalars \phi are naturally coupled to gauge fields through c \phi F \tilde{F}. In the presence of this coupling, gauge field quanta are copiously produced by the rolling inflaton. The produced gauge quanta, in turn, source inflaton fluctuations via inverse decay. These new cosmological perturbations add incoherently with the "vacuum" perturbations, and are highly nongaussian. This provides a natural mechanism to generate large nongaussianity in single or multi field slow-roll inflation. The resulting phenomenological signatures are highly distinctive: large nongaussianity of (nearly) equilateral shape, in addition to detectably large values of both the scalar spectral tilt and tensor-to-scalar ratio (both being typical of large field inflation). The WMAP bound on nongaussianity implies that the coupling, c, of the pseudo-scalar inflaton to any gauge field must be smaller than about 10^{2} M_p^{-1}.Comment: 45 pages, 7 figure

    Sustainability of multi-field inflation and bound on string scale

    Full text link
    We study the effects of the interaction terms between the inflaton fields on the inflationary dynamics in multi-field models. With power law type potential and interactions, the total number of e-folds may get considerably reduced and can lead to unacceptably short period of inflation. Also we point out that this can place a bound on the characteristic scale of the underlying theory such as string theory. Using a simple multi-field chaotic inflation model from string theory, the string scale is constrained to be larger than the scale of grand unified theory.Comment: (v1) 9 pages, 1 figure;(v2) 10 pages, references added; (v3) 15 pages, 4 figures, more discussions about parameters and observable quantities, references added, to appear in Modern Physics Letters

    Poly-instanton Inflation

    Get PDF
    We propose a new inflationary scenario in type IIB Calabi-Yau compactifications, where the inflaton is a K\"ahler modulus parameterising the volume of an internal four-cycle. The inflaton potential is generated via poly-instanton corrections to the superpotential which give rise to a naturally flat direction due to their double exponential suppression. Given that the volume mode is kept stable during inflation, all the inflaton-dependent higher dimensional operators are suppressed. Moreover, string loop effects can be shown to be negligible throughout all the inflationary dynamics for natural values of the underlying parameters. The model is characterised by a reheating temperature of the order Trh106T_{\rm rh}\simeq 10^6 GeV which requires Ne54N_e \simeq 54 e-foldings of inflation. All the inflationary observables are compatible with current observations since the spectral index is ns0.96n_s \simeq 0.96, while the tensor-to-scalar ratio is r105r\simeq 10^{-5}. The volume of the Calabi-Yau is of order 10310^3 in string units, corresponding to an inflationary scale around 101510^{15} GeVComment: 20 pages, 4 figure
    corecore