10,989 research outputs found

    Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides

    Full text link
    The in-plane anisotropy of the electrical resistivity across the coupled orthorhombic and magnetic transitions of the iron pnictides has been extensively studied in the parent and electron-doped compounds. All these studies universally show that the resistivity ρa\rho_{a} across the long orthorhombic axis aOa_{O} - along which the spins couple antiferromagnetically below the magnetic transition temperature - is smaller than the resistivity ρb\rho_{b} of the short orthorhombic axis bOb_{O}, i. e. ρa<ρb\rho_{a}<\rho_{b}. Here we report that in the hole-doped compounds Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2}, as the doping level increases, the resistivity anisotropy initially becomes vanishingly small, and eventually changes sign for sufficiently large doping, i. e. ρb<ρa\rho_{b}<\rho_{a}. This observation is in agreement with a recent theoretical prediction that considers the anisotropic scattering of electrons by spin-fluctuations in the orthorhombic/nematic state.Comment: This paper has been replaced by the new version offering new explanation of the experimental results first reported her

    Back reaction, emission spectrum and entropy spectroscopy

    Full text link
    Recently, an interesting work, which reformulates the tunneling framework to directly produce the Hawking emission spectrum and entropy spectroscopy in the tunneling picture, has been received a broad attention. However, during the emission process, most related observations have not incorporated the effects of back reaction on the background spacetime, whose derivations are therefore not the desiring results for the real physical process. With this point as a central motivation, in this paper we suitably adapt the \emph{reformulated} tunneling framework so that it can well accommodate the effects of back reaction to produce the Hawking emission spectrum and entropy spectroscopy. Consequently, we interestingly find that, when back reaction is considered, the Parikh-Wilczek's outstanding observations that, an isolated radiating black hole has an unitary-evolving emission spectrum that is \emph{not} precisely thermal, but is related to the change of the Bekenstein-Hawking entropy, can also be reproduced in the reformulated tunneling framework, meanwhile the entropy spectrum has the same form as that without inclusion of back reaction, which demonstrates the entropy quantum is \emph{independent} of the effects of back reaction. As our final analysis, we concentrate on the issues of the black hole information, but \emph{unfortunately} find that, even including the effects of back reaction and higher-order quantum corrections, such tunneling formalism can still not provide a mechanism for preserving the black hole information.Comment: 16 pages, no figure, use JHEP3.cls. to be published in JHE

    Quantum corrections and black hole spectroscopy

    Full text link
    In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully reproduced in the tunneling picture. As a result, the derived entropy spectrum of black hole in different gravity (including Einstein's gravity, Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly spaced, sharing the same forms as Sn=nS_n=n, where physical process is only confined in the semiclassical framework. However, the real physical picture should go beyond the semiclassical approximation. In this case, the physical quantities would undergo higher-order quantum corrections, whose effect on different gravity shares in different forms. Motivated by these facts, in this paper we aim to observe how quantum corrections affect black hole spectroscopy in different gravity. The result shows that, in the presence of higher-order quantum corrections, black hole spectroscopy in different gravity still shares the same form as Sn=nS_n=n, further confirming the entropy quantum is universal in the sense that it is not only independent of black hole parameters, but also independent of higher-order quantum corrections. This is a desiring result for the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE

    Genome-wide signatures of convergent evolution in echolocating mammals

    Get PDF
    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised

    Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines

    Get PDF
    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2

    Intriguing Electrostatic Potential of CO: Negative Bond-ends and Positive Bond-cylindrical-surface

    Get PDF
    The strong electronegativity of O dictates that the ground state of singlet CO has positively charged C and negatively charged O, in agreement with ab initio charge analysis, but in disagreement with the dipole direction. Though this unusual phenomenon has been fairly studied, the study of electrostatic potential (EP) for noncovalent interactions of CO is essential for better understanding. Here we illustrate that both C and O atom-ends show negative EP (where the C end gives more negative EP), favoring positively charged species, whereas the cylindrical surface of the CO bond shows positive EP, favoring negatively charged ones. This is demonstrated from the interactions of CO with Na+, Cl-, H2O, CO and benzene. It can be explained by the quadrupole driven electrostatic nature of CO (like N2) with very weak dipole moment. The EP is properly described by the tripole model taking into account the electrostatic multipole moments, which has a large negative charge at a certain distance protruded from C, a large positive charge on C, and a small negative charge on O. We also discuss the EP of the first excited triplet COopen0

    Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium

    Get PDF
    The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h-1 (0.1 vvm)

    Neuromuscular Blockade with Rocuronium Bromide Increases the Tolerance of Acute Normovolemic Anemia in Anesthetized Pigs

    Get PDF
    Background: The patient's individual anemia tolerance is pivotal when blood transfusions become necessary, but are not feasible for some reason. To date, the effects of neuromuscular blockade (NMB) on anemia tolerance have not been investigated. Methods: 14 anesthetized and mechanically ventilated pigs were randomly assigned to the Roc group (3.78 mg/kg rocuronium bromide followed by continuous infusion of 1 mg/kg/min, n = 7) or to the Sal group (administration of the corresponding volume of normal saline, n = 7). Subsequently, acute normovolemic anemia was induced by simultaneous exchange of whole blood for a 6% hydroxyethyl starch solution (130/0.4) until a sudden decrease of total body O-2 consumption (VO2) indicated a critical limitation of O-2 transport capacity. The Hb concentration quantified at this time point (Hb(crit)) was the primary end-point of the protocol. Secondary endpoints were parameters of hemodynamics, O-2 transport and tissue oxygenation. Results: Hb(crit) was significantly lower in the Roc group (2.4 +/- 0.5 vs. 3.2 +/- 0.7 g/dl) reflecting increased anemia tolerance. NMB with rocuronium bromide reduced skeletal muscular VO2 and total body O-2 extraction rate. As the cardiac index increased simultaneously, total body VO2 only decreased marginally in the Roc group (change of VO2 relative to baseline -1.7 +/- 0.8 vs. 3.2 +/- 1.9% in the Sal group, p < 0.05). Conclusion: Deep NMB with rocuronium bromide increases the tolerance of acute normovolemic anemia. The underlying mechanism most likely involves a reduction of skeletal muscular VO2. During acellular treatment of an acute blood loss, NMB might play an adjuvant role in situations where profound stages of normovolemic anemia have to be tolerated (e.g. bridging an unexpected blood loss until blood products become available for transfusion). Copyright (C) 2011 S. Karger AG, Base

    Chern-Simons black holes: scalar perturbations, mass and area spectrum and greybody factors

    Full text link
    We study the Chern-Simons black holes in d-dimensions and we calculate analytically the quasi-normal modes of the scalar perturbations and we show that they depend on the highest power of curvature present in the Chern-Simons theory. We obtain the mass and area spectrum of these black holes and we show that they have a strong dependence on the topology of the transverse space and they are not evenly spaced. We also calculate analytically the reflection and transmission coefficients and the absorption cross section and we show that at low frequency limit there is a range of modes which contributes to the absorption cross section.Comment: 19 pages, 18 figures, the title has been changed to reflect the addition of an another section on the reflection, transmission coefficients and absorption cross sections of the Chern-Simons black holes. Version to be published in JHE
    corecore