11,173 research outputs found
Injury Risk Estimation Expertise Assessing the ACL Injury Risk Estimation Quiz
Background: Available methods for screening anterior cruciate ligament (ACL) injury risk are effective but limited in application as
they generally rely on expensive and time-consuming biomechanical movement analysis. A potential efficient alternative to biomechanical
screening is skilled movement analysis via visual inspection (ie, having experts estimate injury risk factors based on
observations of athletes’ movements).
Purpose: To develop a brief, valid psychometric assessment of ACL injury risk factor estimation skill: the ACL Injury Risk Estimation
Quiz (ACL-IQ).
Study Design: Cohort study (diagnosis); Level of evidence, 3.
Methods: A total of 660 individuals participated in various stages of the study, including athletes, physicians, physical therapists,
athletic trainers, exercise science researchers/students, and members of the general public in the United States. The ACL-IQ was
fully computerized and made available online (www.ACL-IQ.org). Item sampling/reduction, reliability analysis, cross-validation,
and convergent/discriminant validity analysis were conducted to optimize the efficiency and validity of the assessment.
Results: Psychometric optimization techniques identified a short (mean time, 2 min 24 s), robust, 5-item assessment with high
reliability (test-retest: r = 0.90) and consistent discriminability (average difference of exercise science professionals vs general
population: Cohen d = 1.98). Exercise science professionals and general population individuals scored 74% and 53% correct,
respectively. Convergent and discriminant validity was demonstrated. Scores on the ACL-IQ were most associated with ACL
knowledge and various cue utilities and were least associated with domain-general spatial/decision-making ability, personality,
or other demographic variables. Overall, 23% of the total sample (40% exercise science professionals; 6% general population)
performed better than or equal to the ACL nomogram.
Conclusion: This study presents the results of a systematic approach to assess individual differences in ACL injury risk factor
estimation skill; the assessment approach is efficient (ie, it can be completed in\3 min) and psychometrically robust. The results
provide evidence that some individuals have the ability to visually estimate ACL injury risk factors more accurately than other
instrument-based ACL risk estimation methods (ie, ACL nomogram). The ACL-IQ provides the foundation for assessing the efficacy
of observational ACL injury risk factor assessment (ie, does simple skilled visual inspection reduce ACL injuries?). It also
provides a representative task environment that can be used to increase our understanding of the perceptual-cognitive mechanisms
underlying observational movement analysis and to improve injury risk assessment performance
Liquid-phase synthesis of 2′-methyl-RNA on a homostar support through organic-solvent nanofiltration
Due to the discovery of RNAi, oligonucleotides (oligos) have re-emerged as a major pharmaceutical target that may soon be required in ton quantities. However, it is questionable whether solid-phase oligo synthesis (SPOS) methods can provide a scalable synthesis. Liquid-phase oligo synthesis (LPOS) is intrinsically scalable and amenable to standard industrial batch synthesis techniques. However, most reported LPOS strategies rely upon at least one precipitation per chain extension cycle to separate the growing oligonucleotide from reaction debris. Precipitation can be difficult to develop and control on an industrial scale and, because many precipitations would be required to prepare a therapeutic oligonucleotide, we contend that this approach is not viable for large-scale industrial preparation. We are developing an LPOS synthetic strategy for 2′-methyl RNA phosphorothioate that is more amenable to standard batch production techniques, using organic solvent nanofiltration (OSN) as the critical scalable separation technology. We report the first LPOS-OSN preparation of a 2′-Me RNA phosphorothioate 9-mer, using commercial phosphoramidite monomers, and monitoring all reactions by HPLC, (31)P NMR spectroscopy and MS
Goldstini Can Give the Higgs a Boost
Supersymmetric collider phenomenology depends crucially on whether the
lightest observable-sector supersymmetric particle (LOSP) decays, and if so,
what the LOSP decay products are. For instance, in SUSY models where the
gravitino is lighter than the LOSP, the LOSP decays to its superpartner and a
longitudinal gravitino via supercurrent couplings. In this paper, we show that
LOSP decays can be substantially modified when there are multiple sectors that
break supersymmetry, where in addition to the gravitino there are light uneaten
goldstini. As a particularly striking example, a bino-like LOSP can have a near
100% branching fraction to a higgs boson and an uneaten goldstino, even if the
LOSP has negligible higgsino fraction. This occurs because the uneaten
goldstino is unconstrained by the supercurrent, allowing additional operators
to mediate LOSP decay. These operators can be enhanced in the presence of an R
symmetry, leading to copious boosted higgs production in SUSY cascade decays.Comment: 30 pages, 12 figures; v2: title change, clarifications added, version
to appear in JHE
Jet Substructure Without Trees
We present an alternative approach to identifying and characterizing jet
substructure. An angular correlation function is introduced that can be used to
extract angular and mass scales within a jet without reference to a clustering
algorithm. This procedure gives rise to a number of useful jet observables. As
an application, we construct a top quark tagging algorithm that is competitive
with existing methods.Comment: 22 pages, 16 figures, version accepted by JHE
Topological Schr\"odinger cats: Non-local quantum superpositions of topological defects
Topological defects (such as monopoles, vortex lines, or domain walls) mark
locations where disparate choices of a broken symmetry vacuum elsewhere in the
system lead to irreconcilable differences. They are energetically costly (the
energy density in their core reaches that of the prior symmetric vacuum) but
topologically stable (the whole manifold would have to be rearranged to get rid
of the defect). We show how, in a paradigmatic model of a quantum phase
transition, a topological defect can be put in a non-local superposition, so
that - in a region large compared to the size of its core - the order parameter
of the system is "undecided" by being in a quantum superposition of conflicting
choices of the broken symmetry. We demonstrate how to exhibit such a
"Schr\"odinger kink" by devising a version of a double-slit experiment suitable
for topological defects. Coherence detectable in such experiments will be
suppressed as a consequence of interaction with the environment. We analyze
environment-induced decoherence and discuss its role in symmetry breaking.Comment: 7 pages, 4 figure
Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel
The combined strengthening effects of grain refinement and high precipitated
volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected
to SPD processing prior to aging treatment were investigated by atom probe
tomography and scanning transmission electron microscopy. It was shown that the
refinement of the microstructure affects the precipitation kinetics and the
spatial distribution of the secondary hardening intermetallic phase, which was
observed to nucleate heterogeneously on dislocations and sub-grain boundaries.
It was revealed that alloys successively subjected to these two strengthening
mechanisms exhibit a lower increase in mechanical strength than a simple
estimation based on the summation of the two individual strengthening
mechanisms
Identifying Boosted Objects with N-subjettiness
We introduce a new jet shape -- N-subjettiness -- designed to identify
boosted hadronically-decaying objects like electroweak bosons and top quarks.
Combined with a jet invariant mass cut, N-subjettiness is an effective
discriminating variable for tagging boosted objects and rejecting the
background of QCD jets with large invariant mass. In efficiency studies of
boosted W bosons and top quarks, we find tagging efficiencies of 30% are
achievable with fake rates of 1%. We also consider the discovery potential for
new heavy resonances that decay to pairs of boosted objects, and find
significant improvements are possible using N-subjettiness. In this way,
N-subjettiness combines the advantages of jet shapes with the discriminating
power seen in previous jet substructure algorithms.Comment: 26 pages, 26 figures, 2 tables; v2: references added; v3: discussion
of results extende
Heavy Squarks at the LHC
The LHC, with its seven-fold increase in energy over the Tevatron, is capable
of probing regions of SUSY parameter space exhibiting qualitatively new
collider phenomenology. Here we investigate one such region in which first
generation squarks are very heavy compared to the other superpartners. We find
that the production of these squarks, which is dominantly associative, only
becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However,
discovery of this scenario is complicated because heavy squarks decay primarily
into a jet and boosted gluino, yielding a dijet-like topology with missing
energy (MET) pointing along the direction of the second hardest jet. The result
is that many signal events are removed by standard jet/MET anti-alignment cuts
designed to guard against jet mismeasurement errors. We suggest replacing these
anti-alignment cuts with a measurement of jet substructure that can
significantly extend the reach of this channel while still removing much of the
background. We study a selection of benchmark points in detail, demonstrating
that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC
with L~10(100)fb-1
Mixed integer programming in production planning with backlogging and setup carryover : modeling and algorithms
This paper proposes a mixed integer programming formulation for modeling the capacitated multi-level lot sizing problem with both backlogging and setup carryover. Based on the model formulation, a progressive time-oriented decomposition heuristic framework is then proposed, where improvement and construction heuristics are effectively combined, therefore efficiently avoiding the weaknesses associated with the one-time decisions made by other classical time-oriented decomposition algorithms. Computational results show that the proposed optimization framework provides competitive solutions within a reasonable time
Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion
The ability to transduce non-classical states of light from one wavelength to
another is a requirement for integrating disparate quantum systems that take
advantage of telecommunications-band photons for optical fiber transmission of
quantum information and near-visible, stationary systems for manipulation and
storage. In addition, transducing a single-photon source at 1.3 {\mu}m to
visible wavelengths for detection would be integral to linear optical quantum
computation due to the challenges of detection in the near-infrared. Recently,
transduction at single-photon power levels has been accomplished through
frequency upconversion, but it has yet to be demonstrated for a true
single-photon source. Here, we transduce the triggered single-photon emission
of a semiconductor quantum dot at 1.3 {\mu}m to 710 nm with a total detection
(internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm
signal maintains the quantum character of the 1.3 {\mu}m signal, yielding a
photon anti-bunched second-order intensity correlation, g^(2)(t), that shows
the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.Comment: 7 pages, 4 figure
- …
