755 research outputs found

    Idling Magnetic White Dwarf in the Synchronizing Polar BY Cam. The Noah-2 Project

    Full text link
    Results of a multi-color study of the variability of the magnetic cataclysmic variable BY Cam are presented. The observations were obtained at the Korean 1.8m and Ukrainian 2.6m, 1.2m and 38-cm telescopes in 2003-2005, 56 observational runs cover 189 hours. The variations of the mean brightness in different colors are correlated with a slope dR/dV=1.29(4), where the number in brackets denotes the error estimates in the last digits. For individual runs, this slope is much smaller ranging from 0.98(3) to 1.24(3), with a mean value of 1.11(1). Near the maximum, the slope becomes smaller for some nights, indicating more blue spectral energy distribution, whereas the night-to-night variability has an infrared character. For the simultaneous UBVRI photometry, the slopes increase with wavelength from dU/dR=0.23(1) to dI/dR=1.18(1). Such wavelength dependence is opposite to that observed in non-magnetic cataclysmic variables, in an agreement to the model of cyclotron emission. The principal component analysis shows two (with a third at the limit of detection) components of variablitity with different spectral energy distribution, which possibly correspond to different regions of emission. The scalegram analysis shows a highest peak corresponding to the 200-min spin variability, its quarter and to the 30-min and 8-min QPOs. The amplitudes of all these components are dependent on wavelength and luminosity state. The light curves were fitted by a statistically optimal trigonometrical polynomial (up to 4-th order) to take into account a 4-hump structure. The dependences of these parameters on the phase of the beat period and on mean brightness are discussed. The amplitude of spin variations increases with an increasing wavelength and with decreasing brightnessComment: 30pages, 11figures, accepted in Cent.Eur.J.Phy

    The Constraint of a General Effective Potential in Vector Torsion Coupled Conformally Induced Gravity

    Full text link
    It is found that the deviation of an effective potential from the quartic form is related to the metric and vector torsion dependencies of the effective potential in the vector torsion coupled conformally induced gravity.Comment: 3pages Revtex 3.0, no figur

    Temperature dependence of the upper critical field of high-Tc superconductors from isothermal magnetization data. Influence of a temperature dependent Ginzburg-Landau parameter

    Full text link
    We show that the scaling procedure, recently proposed for the evaluation of the temperature variation of the normalized upper critical field of type-II superconductors, may easily be modified in order to take into account a possible temperature dependence of the Ginzburg-Landau parameter kappa. As an example, we consider kappa (T) as it follows from the microscopic theory of superconductivity.Comment: 7 pages, 4 figur

    NMR quantum computation with indirectly coupled gates

    Full text link
    An NMR realization of a two-qubit quantum gate which processes quantum information indirectly via couplings to a spectator qubit is presented in the context of the Deutsch-Jozsa algorithm. This enables a successful comprehensive NMR implementation of the Deutsch-Jozsa algorithm for functions with three argument bits and demonstrates a technique essential for multi-qubit quantum computation.Comment: 9 pages, 2 figures. 10 additional figures illustrating output spectr

    On the interpretation of the equilibrium magnetization in the mixed state of high-Tc superconductors

    Full text link
    We apply a recently developed scaling procedure to the analysis of equilibrium magnetization M(H) data that were obtained for T-2212 and Bi-2212single crystals and were reported in the literature. The temperature dependencies of the upper critical field and the magnetic field penetration depth resulting from our analysis are distinctly different from those obtained in the original publications. We argue that theoretical models, which are usually employed for analyses of the equilibrium magnetization in the mixed state of type-II superconductors are not adequate for a quantitative description of high-Tc superconductors. In addition, we demonstrate that the scaled equilibrium magnetization M(H) curve for a Tl-2212 sample reveals a pronounced kink, suggesting a phase transition in the mixed state.Comment: 9 pages, 5figure

    Two types of Hc2(T) dependences in Bi_2Sr_2Ca_(1-x)Y_xCu_2O_(8+delta) with different Yttrium content

    Full text link
    We reanalyze the magnetization data collected on Bi_2Sr_2Ca_(1-x)Y_xCu_2O_(8+y) samples (Kim at al, Phys. Rev. B 72, 64525 (2005)) and argue that the method, which was used for the analysis of equilibrium magnetization data, is not adequate to the experimental situation. As a result, the temperature dependencies of the upper critical field Hc2(T) and the magnetic field penetration depth lambda (T), obtained in this work, are misinterpreted. Using a different approach to analysis, we demonstrate that the normalizedHc2(T) curves are rather different from those presented in the original publication and do not follow predictions of the Werthamer-Helfand-Hohenberg theory. Another important observation is that the Hc2(T) dependencies for two samples with different levels of doping are qualitatively different.Comment: 10 pages, 3 figure

    Robustness of Decoherence-Free Subspaces for Quantum Computation

    Full text link
    It was shown recently [D.A. Lidar et al., Phys. Rev. Lett. 81, 2594 (1998)] that within the framework of the semigroup Markovian master equation, decoherence-free (DF) subspaces exist which are stable to first order in time to a perturbation. Here this result is extended to the non-Markovian regime and generalized. In particular, it is shown that within both the semigroup and the non-Markovian operator sum representation, DF subspaces are stable to all orders in time to a symmetry-breaking perturbation. DF subspaces are thus ideal for quantum memory applications. For quantum computation, however, the stability result does not extend beyond the first order. Thus, to perform robust quantum computation in DF subspaces, they must be supplemented with quantum error correcting codes.Comment: 16 pages, no figures. Several changes, including a clarification of the derivation of the Lindblad equation from the operator sum representation. To appear in Phys. Rev

    On the accretion disc properties in eclipsing dwarf nova EM Cyg

    Full text link
    In this paper we analyzed the behavior of the unusual dwarf nova EM Cyg using the data obtained in April-October, 2007 in Vyhorlat observatory (Slovak Republic) and in September, 2006 in Crimean Astrophysical Observatory (Ukraine). During our observations EM Cyg has shown outbursts in every 15-40 days. Because on the light curves of EM Cyg the partial eclipse of an accretion disc is observed we applied the eclipse mapping technique to reconstruct the temperature distribution in eclipsed parts of the disc. Calculations of the accretion rate in the system were made for the quiescent and the outburst states of activity for different distances.Comment: 6 pages, 3 figures, accepted in Astrophysics and Space Scienc

    Hadronic τ\tau decay, the renormalization group, analiticity of the polarization operators and QCD parameters

    Full text link
    The ALEPH data on hadronic tau-decay is throughly analysed in the framework of QCD. The perturbative calculations are performed in 1-4-loop approximation. The analytical properties of the polarization operators are used in the whole complex q^2 plane. It is shown that the QCD prediction for R_{tau} agrees with the measured value R_{tau} not only for conventional Lambda^{conv}_3 = (618+-29) MeV but as well as for Lambda^{new}_3 = (1666+-7) MeV. The polarization operator calculated using the renormgroup has nonphysical cut [-Lambda^2_3, 0]. If Lambda_3 = Lambda^{conv}_3, the contribution of only physical cut is deficient in the explanation of the ALEPH experiment. If Lambda_3 = Lambda^{new}_3 the contribution of nonphysical cut is very small and only the physical cut explains the ALEPH experiment. The new sum rules which follow only from analytical properties of polarization operators are obtained. Basing on the sum rules obtained, it is shown that there is an essential disagreement between QCD perturbation theory and the tau-lepton hadronic decay experiment at conventional value Lambda_3. In the evolution upwards to larger energies the matching of r(q^2) (Eq.(12)) at the masses J/psi, Upsilon and 2m_t was performed. The obtained value alpha_s(-m^2_z) = 0.141+-0.004 (at Lambda_3 = Lambda^{new}_3) differs essentially from conventional value, but the calculation of the values R(s) = sigma(e+e- -> hadrons)/sigma(e+e- -> mu+mu-), R_l = Gamma(Z -> hadrons)/Gamma(Z -> leptons), alpha_s(-3 GeV^2), alpha_s(-2.5 GeV^2) does not contradict the experiments.Comment: 20 page

    Optically induced coherent intra-band dynamics in disordered semiconductors

    Full text link
    On the basis of a tight-binding model for a strongly disordered semiconductor with correlated conduction- and valence band disorder a new coherent dynamical intra-band effect is analyzed. For systems that are excited by two, specially designed ultrashort light-pulse sequences delayed by tau relatively to each other echo-like phenomena are predicted to occur. In addition to the inter-band photon echo which shows up at exactly t=2*tau relative to the first pulse, the system responds with two spontaneous intra-band current pulses preceding and following the appearance of the photon echo. The temporal splitting depends on the electron-hole mass ratio. Calculating the population relaxation rate due to Coulomb scattering, it is concluded that the predicted new dynamical effect should be experimentally observable in an interacting and strongly disordered system, such as the Quantum-Coulomb-Glass.Comment: to be published in Physical Review B15 February 200
    corecore