49,234 research outputs found
QCD axion and quintessential axion
The axion solution of the strong CP problem is reviewed together with the
other strong CP solutions. We also point out the quintessential
axion(quintaxion) whose potential can be extremely flat due to the tiny ratio
of the hidden sector quark mass and the intermediate hidden sector scale. The
quintaxion candidates are supposed to be the string theory axions, the model
independent or the model dependent axions.Comment: 15 pages. Talk presented at Castle Ringberg, June 9-14, 200
Hybridization and Decay of Magnetic Excitations in two-dimensional Triangular Lattice Antiferromagnets
Elementary quasiparticles in solids such as phonons and magnons occasionally
have nontrivial interactions between them, as well as among themselves. As a
result, their energy eigenvalues are renormalized, the quasiparticles
spontaneously decay into a multi-particle continuum state, or they are
hybridized with each other when their energies are close. As discussed in this
review, such anomalous features can appear dominantly in quantum magnets but
are not, a priori, negligible for magnetic systems with larger spin values and
noncollinear magnetic structures. We review the unconventional magnetic
excitations in two-dimensional triangular lattice antiferromagnets and discuss
their implications on related issues.Comment: 18 pages, 9 figure
The anomalous U(1) global symmetry and flavors from an SU(5) x SU(5) GUT in orbifold compactification
In string compactifications, frequently there appears the anomalous U(1)
gauge symmetry which belonged to E8E8 of the heterotic string. This
anomalous U(1) gauge boson obtains mass at the compactification scale, just
below GeV, by absorbing one pseudoscalar (corresponding to the
model-independent axion) from the second rank anti-symmetric tensor field
.
Below the compactification scale, there results a global symmetry U(1) whose charge is the original gauge U(1) charge. This is
the most natural global symmetry, realizing the "invisible" axion. This global
symmetry U(1) is suitable for a flavor symmetry. In the simplest
compactification model with the flipped SU(5) grand unification, we calculate
all the low energy parameters in terms of the vacuum expectation values of the
standard model singlets.Comment: 18 pages, 4 figur
Hybrid integration methods for on-chip quantum photonics
The goal of integrated quantum photonics is to combine components for the generation, manipulation, and detection of nonclassical light in a phase-stable and efficient platform. Solid-state quantum emitters have recently reached outstanding performance as single-photon sources. In parallel, photonic integrated circuits have been advanced to the point that thousands of components can be controlled on a chip with high efficiency and phase stability. Consequently, researchers are now beginning to combine these leading quantum emitters and photonic integrated circuit platforms to realize the best properties of each technology. In this paper, we review recent advances in integrated quantum photonics based on such hybrid systems. Although hybrid integration solves many limitations of individual platforms, it also introduces new challenges that arise from interfacing different materials. We review various issues in solid-state quantum emitters and photonic integrated circuits, the hybrid integration techniques that bridge these two systems, and methods for chip-based manipulation of photons and emitters. Finally, we discuss the remaining challenges and future prospects of on-chip quantum photonics with integrated quantum emitters. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
Some Inequalities in 2-inner Product Spaces
In this paper we extend some results on the refinement of Cauchy-Buniakowski-Schwarz's inequality and Aćzel's inequality in inner product spaces to 2-inner product spaces
On Some Grüss Type Inequality in 2-Inner Product Spaces and Applications
In this paper, we shall give a generalization of the Grüss type inequality and obtain some applications of the Grüss type inequality in terms of 2-inner product spaces
Magnon topology and thermal Hall effect in trimerized triangular lattice antiferromagnet
The non-trivial magnon band topology and its consequent responses have been
extensively studied in two-dimensional magnetisms. However, the triangular
lattice antiferromagnet (TLAF), the best-known frustrated two-dimensional
magnet, has received less attention than the closely related Kagome system,
because of the spin-chirality cancellation in the umbrella ground state of the
undistorted TLAF. In this work, we study the band topology and the thermal Hall
effect (THE) of the TLAF with (anti-)trimerization distortion under the
external perpendicular magnetic field using the linearized spin wave theory. We
show that the spin-chirality cancellation is removed in such case, giving rise
to the non-trivial magnon band topology and the finite THE. Moreover, the
magnon bands exhibit band topology transitions tuned by the magnetic field. We
demonstrate that such transitions are accompanied by the logarithmic divergence
of the first derivative of the thermal Hall conductivity. Finally, we examine
the above consequences by calculating the THE in the hexagonal manganite
YMnO, well known to have anti-trimerization.Comment: 6 + 7 pages, 3 + 5 figures, 0 + 1 table; Journal reference adde
- …
