19,880 research outputs found

    The explicit form of expectation propagation for a simple statistical model

    Full text link
    © 2016, Institute of Mathematical Statistics. All rights reserved. We derive the explicit form of expectation propagation for approximate deterministic Bayesian inference in a simple statistical model. The model corresponds to a random sample from the Normal distribution. The explicit forms, and their derivation, allow a deeper understanding of the issues and challenges involved in practical implementation of expectation propagation for statistical analyses. No auxiliary approximations are used: we follow the expectation propagation prescription exactly. A simulation study shows expectation propagation to be more accurate than mean field variational Bayes for larger sample sizes, but at the cost of considerably more algebraic and computational effort

    Age-related diffusion patterns in intervertebral disc degeneration

    Get PDF
    Poster Presentation - Give the Dog a Bone: no. 818postprintThe Joint Annual Meeting of ISMRM-ESMRMB 2010, Stockholm, Sweden, 1-7 May 2010

    Lower bounds for on-line graph colorings

    Full text link
    We propose two strategies for Presenter in on-line graph coloring games. The first one constructs bipartite graphs and forces any on-line coloring algorithm to use 2log2n102\log_2 n - 10 colors, where nn is the number of vertices in the constructed graph. This is best possible up to an additive constant. The second strategy constructs graphs that contain neither C3C_3 nor C5C_5 as a subgraph and forces Ω(nlogn13)\Omega(\frac{n}{\log n}^\frac{1}{3}) colors. The best known on-line coloring algorithm for these graphs uses O(n12)O(n^{\frac{1}{2}}) colors

    Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility

    Get PDF
    While the molecular interactions between individual myosin motors and F-actin are well established, the relationship between F-actin organization and actomyosin forces remains poorly understood. Here we explore the accumulation of myosin-induced stresses within a two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin activity is controlled spatiotemporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actin networks is highly cooperative, telescopic with the activation size, and capable of generating non-uniform patterns of mechanical stress. We quantitatively reproduce these collective biomimetic properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations

    Ultrashort time-to-echo MRI of the cartilagenous endplate & relationship to degenerative disc disease & Schmorl’s nodes

    Get PDF
    Session - The Short of It: no. 570Early diagnosis of CEP defects by UTE technique may provide useful information for understanding the pathogenesis of each of DDD and Schmorl¡¦s nodes (SN). The objective of this study was to assess CEP integrity in normal IVD levels, levels with degenerated IVDs and levels with SNs. Based on the UTE images, CEP defects were defined as discontinuity of high signal over 4 consecutive slices. Results showed that CEP defects were found to have a 4.5 fold increased likelihood of having DDD. No association between CEP defects and SNs was established. The effects of age and CEP defects were found to be level dependent. (abstract by publisher)postprin

    Counterflow dielectrophoresis for trypanosome enrichment and detection in blood

    Get PDF
    Human African trypanosomiasis or sleeping sickness is a deadly disease endemic in sub-Saharan Africa, caused by single-celled protozoan parasites. Although it has been targeted for elimination by 2020, this will only be realized if diagnosis can be improved to enable identification and treatment of afflicted patients. Existing techniques of detection are restricted by their limited field-applicability, sensitivity and capacity for automation. Microfluidic-based technologies offer the potential for highly sensitive automated devices that could achieve detection at the lowest levels of parasitemia and consequently help in the elimination programme. In this work we implement an electrokinetic technique for the separation of trypanosomes from both mouse and human blood. This technique utilises differences in polarisability between the blood cells and trypanosomes to achieve separation through opposed bi-directional movement (cell counterflow). We combine this enrichment technique with an automated image analysis detection algorithm, negating the need for a human operator

    Cracking in asphalt materials

    Get PDF
    This chapter provides a comprehensive review of both laboratory characterization and modelling of bulk material fracture in asphalt mixtures. For the purpose of organization, this chapter is divided into a section on laboratory tests and a section on models. The laboratory characterization section is further subdivided on the basis of predominant loading conditions (monotonic vs. cyclic). The section on constitutive models is subdivided into two sections, the first one containing fracture mechanics based models for crack initiation and propagation that do not include material degradation due to cyclic loading conditions. The second section discusses phenomenological models that have been developed for crack growth through the use of dissipated energy and damage accumulation concepts. These latter models have the capability to simulate degradation of material capacity upon exceeding a threshold number of loading cycles.Peer ReviewedPostprint (author's final draft

    Quantitative evaluation of diffusion tensor imaging at 3T in the human lumbar intervertebral disc degeneration

    Get PDF
    Poster presentations: ST4postprintThe 2010 World Forum for Spine Research (WFSR 2010): The Intervertebral Disc, Montreal, Canada, 5-8 July 2010

    Multiparametric magnetic resonance imaging of normal and degenerative lumbar intervertebral discs

    Get PDF
    Magnetic resonance imaging (MRI) has been shown to improve the diagnosis and management of patients with intervertebral disc (IVD) related disorders. Multiparametric MRI offers the possibility of noninvasively assessing multiple aspects of pathophysiological processes that exist simultaneously, thereby further assisting in patient treatment management. The purpose of this study is to determine the correlation between relaxation parameters (T1ρ and T2), diffusion properties including fractional anisotropy (FA) and mean diffusivity (MD) measured by diffusion tensor imaging (DTI) and various clinical findings in human IVD. Our results suggest that each parameter may attribute different sensitivity to tissue properties.postprin
    corecore