337,656 research outputs found

    Standing waves in the Lorentz-covariant world

    Full text link
    When Einstein formulated his special relativity, he developed his dynamics for point particles. Of course, many valiant efforts have been made to extend his relativity to rigid bodies, but this subject is forgotten in history. This is largely because of the emergence of quantum mechanics with wave-particle duality. Instead of Lorentz-boosting rigid bodies, we now boost waves and have to deal with Lorentz transformations of waves. We now have some understanding of plane waves or running waves in the covariant picture, but we do not yet have a clear picture of standing waves. In this report, we show that there is one set of standing waves which can be Lorentz-transformed while being consistent with all physical principle of quantum mechanics and relativity. It is possible to construct a representation of the Poincar\'e group using harmonic oscillator wave functions satisfying space-time boundary conditions. This set of wave functions is capable of explaining the quantum bound state for both slow and fast hadrons. In particular it can explain the quark model for hadrons at rest, and Feynman's parton model hadrons moving with a speed close to that of light.Comment: LaTex 20 pages, presented at the 2004 meeting of the International Association of Relativistic Dynamincs, to be published in the proceeding

    Proton pygmy resonances: predictions for N=20 isotones

    Full text link
    We study theoretically the low-energy electric-dipole response of N=20 isotones. We present results from a quasiparticle random-phase approximation (QRPA) and a continuum random-phase approximation (CRPA), and we compare them with results for the mirror Z=20 nuclei. According to our analysis, enhanced E1 strength is expected energetically well below the giant dipole resonance in the proton-rich isotones. Large amounts of E1 strength in the asymmetric N=20 isotones are predicted, unlike their equally asymmetric Z=20 mirror nuclei, pointing unambiguously to the role of structural effects such as loose binding. A proton-skin oscillation could develop especially in 46Fe. The proper description of non localized threshold transitions and the nucleon effective mass in mean-field treatments may affect theoretical predictions. We call for systematic theoretical investigations to quantify the role bulk-matter properties, in anticipation of measurements of E1 transitions in proton-rich nuclei.Comment: 10 pages, incl. 9 figures and 2 tables; v2: some rephrasing and clarifications, corrected Fig.

    Coupled oscillators and Feynman's three papers

    Get PDF
    According to Richard Feynman, the adventure of our science of physics is a perpetual attempt to recognize that the different aspects of nature are really different aspects of the same thing. It is therefore interesting to combine some, if not all, of Feynman's papers into one. The first of his three papers is on the ``rest of the universe'' contained in his 1972 book on statistical mechanics. The second idea is Feynman's parton picture which he presented in 1969 at the Stony Brook conference on high-energy physics. The third idea is contained in the 1971 paper he published with his students, where they show that the hadronic spectra on Regge trajectories are manifestations of harmonic-oscillator degeneracies. In this report, we formulate these three ideas using the mathematics of two coupled oscillators. It is shown that the idea of entanglement is contained in his rest of the universe, and can be extended to a space-time entanglement. It is shown also that his parton model and the static quark model can be combined into one Lorentz-covariant entity. Furthermore, Einstein's special relativity, based on the Lorentz group, can also be formulated within the mathematical framework of two coupled oscillators.Comment: 31 pages, 6 figures, based on the concluding talk at the 3rd Feynman Festival (Collage Park, Maryland, U.S.A., August 2006), minor correction

    The Role of executive function in children\u27s source monitoring with varying retrieval strategies

    Get PDF
    Previous research on the relationship between executive function and source monitoring in young children has been inconclusive, with studies finding conflicting results about whether working memory and inhibitory control are related to source-monitoring ability. In this study, the role of working memory and inhibitory control in recognition memory and source monitoring with two different retrieval strategies were examined. Children (N = 263) aged 4–8 participated in science activities with two sources. They were later given a recognition and source-monitoring test, and completed measures of working memory and inhibitory control. During the source-monitoring test, half of the participants were asked about sources serially (one after the other) whereas the other half of the children were asked about sources in parallel (considering both sources simultaneously). Results demonstrated that working memory was a predictor of source-monitoring accuracy in both conditions, but inhibitory control was only related to source accuracy in the parallel condition. When age was controlled these relationships were no longer significant, suggesting that a more general cognitive development factor is a stronger predictor of source monitoring than executive function alone. Interestingly, the children aged 4–6 years made more accurate source decisions in the parallel condition than in the serial condition. The older children (aged 7–8) were overall more accurate than the younger children, and their accuracy did not differ as a function of interview condition. Suggestions are provided to guide further research in this area that will clarify the diverse results of previous studies examining whether executive function is a cognitive prerequisite for effective source monitoring

    New Asymptotic Expanstion Method for the Wheeler-DeWitt Equation

    Full text link
    A new asymptotic expansion method is developed to separate the Wheeler-DeWitt equation into the time-dependent Schr\"{o}dinger equation for a matter field and the Einstein-Hamilton-Jacobi equation for the gravitational field including the quantum back-reaction of the matter field. In particular, the nonadiabatic basis of the generalized invariant for the matter field Hamiltonian separates the Wheeler-DeWitt equation completely in the asymptotic limit of mp2m_p^2 approaching infinity. The higher order quantum corrections of the gravity to the matter field are found. The new asymptotic expansion method is valid throughout all regions of superspace compared with other expansion methods with a certain limited region of validity. We apply the new asymptotic expansion method to the minimal FRW universe.Comment: 24 pages of Latex file, revte

    Feynman's Decoherence

    Get PDF
    Gell-Mann's quarks are coherent particles confined within a hadron at rest, but Feynman's partons are incoherent particles which constitute a hadron moving with a velocity close to that of light. It is widely believed that the quark model and the parton model are two different manifestations of the same covariant entity. If this is the case, the question arises whether the Lorentz boost destroys coherence. It is pointed out that this is not the case, and it is possible to resolve this puzzle without inventing new physics. It is shown that this decoherence is due to the measurement processes which are less than complete.Comment: RevTex 15 pages including 6 figs, presented at the 9th Int'l Conference on Quantum Optics (Raubichi, Belarus, May 2002), to be published in the proceeding

    Children’s Use of a ‘Time Line’ to Indicate When Events Occurred

    Get PDF
    Children who allege abuse are often asked to provide temporal information such as when the events occurred. Yet, young children often have difficulty recalling temporal information due to their limited knowledge of temporal patterns and linguistic capabilities. As time is an abstract concept (we cannot see it), some investigators have begun to use ‘time-lines’ or pictorial representations of time to aid children. Yet, there is no published research testing whether children are able to use time-lines and whether they can provide adequate temporal information using them. We tested whether children could indicate the time-of-day of events using a pictorial time-line and then compared their responses to their parents’. Seven- to 8-year-olds were most consistent with parental estimates while 4-year-olds were least consistent. Responses from the 5- to 6-year-olds depended on the temporal task. Guessing and using general knowledge to estimate the time-of-day were ruled out, and so children were genuinely drawing on episodic memory when making time-line judgments. Thus, there was a developmental progression in children’s use of physical representations to communicate abstract information. These results are promising for the use of the time-line in forensic settings but much more research is needed

    A Test of SU(15) at HERA Using The HELAS Program

    Get PDF
    A possible SU(15) process at HERA is investigated. The process that we consider is e^- P\ra \bar\nu_e \mu^- \mu^- +anything through the exchange of new heavy gauge bosons XX^- and XX^{--} which are predicted in SU(15). This process produces two easily observable like-sign muons in the final state. The cross section of this process is calculated by using HELAS and VEGAS programs, and PDF-library functions. The cross section turns out to be small to be observed in near future.Comment: 5 pages in latex with 4 figure

    Can paraphrasing increase the amount and accuracy of reports from child eyewitnesses?

    Get PDF
    Young children’s descriptions of sexual abuse are often sparse thus creating the need for techniques that elicit lengthier accounts. ‘Paraphrasing’, or repeating information children have just disclosed, is a technique sometimes used by forensic interviewers to clarify or elicit information. (e.g., if a child stated “He touched me”, an interviewer could respond “He touched you?”). However, the effects of paraphrasing have yet to be scientifically assessed. The impact of different paraphrasing styles on young children’s reports was investigated. Overall, paraphrasing per se did not improve the length, richness, or accuracy of reports when compared to open-ended prompts such as “tell me more,” but some styles of paraphrasing were more beneficial than others. The results provide clear recommendations for investigative interviewers about how to use paraphrasing appropriately, and which practices can compromise the quality of children’s reports
    corecore