14,001 research outputs found

    Multifaceted empathy of healthy volunteers after single doses of MDMA: A pooled sample of placebo-controlled studies

    Get PDF
    Previous placebo-controlled experimental studies have shown that a single dose of MDMA can increase emotional empathy in the multifaceted empathy test (MET) without affecting cognitive empathy. Although sufficiently powered to detect main effects of MDMA, these studies were generally underpowered to also validly assess contributions of additional parameters, such as sex, drug use history, trait empathy and MDMA or oxytocin plasma concentrations. The present study examined the robustness of the MDMA effect on empathy and investigated the moderating role of these additional parameters. Participants ( n = 118) from six placebo-controlled within-subject studies and two laboratories were included in the present pooled analysis. Empathy (MET), MDMA and oxytocin plasma concentrations were assessed after oral administration of MDMA (single dose, 75 or 125 mg). Trait empathy was assessed using the interpersonal reactivity index. We confirmed that MDMA increased emotional empathy at both doses without affecting cognitive empathy. This MDMA-related increase in empathy was most pronounced during presentation of positive emotions as compared with negative emotions. MDMA-induced empathy enhancement was positively related to MDMA blood concentrations measured before the test, but independent of sex, drug use history and trait empathy. Oxytocin concentrations increased after MDMA administration but were not associated with behavioral effects. The MDMA effects on emotional empathy were stable across laboratories and doses. Sex did not play a moderating role in this effect, and oxytocin levels, trait empathy and drug use history were also unrelated. Acute drug exposure was of significant relevance in the MDMA-induced emotional empathy elevation

    Cornering the unphysical vertex

    Full text link
    In the classical pure spinor worldsheet theory of AdS5xS5 there are some vertex operators which do not correspond to any physical excitations. We study their flat space limit. We find that the BRST operator of the worldsheet theory in flat space-time can be nontrivially deformed without deforming the worldsheet action. Some of these deformations describe the linear dilaton background. But the deformation corresponding to the nonphysical vertex differs from the linear dilaton in not being worldsheet parity even. The nonphysically deformed worldsheet theory has nonzero beta-function at one loop. This means that the classical Type IIB SUGRA backgrounds are not completely characterized by requiring the BRST symmetry of the classical worldsheet theory; it is also necessary to require the vanishing of the one-loop beta-function.Comment: LaTeX 40pp; v2: explained the relation to the linear dilaton background (Section 6), changes in Introduction and Abstrac

    European bone mineral density loci are also associated with BMD in East-Asian populations

    Get PDF
    Most genome-wide association (GWA) studies have focused on populations of European ancestry with limited assessment of the influence of the sequence variants on populations of other ethnicities. To determine whether markers that we have recently shown to associate with Bone Mineral Density (BMD) in Europeans also associate with BMD in East-Asians we analysed 50 markers from 23 genomic loci in samples from Korea (n = 1,397) and two Chinese Hong Kong sample sets (n = 3,869 and n = 785). Through this effort we identified fourteen loci that associated with BMD in East-Asian samples using a false discovery rate (FDR) of 0.05; 1p36 (ZBTB40, P = 4.3×10 -9), 1p31 (GPR177, P = 0.00012), 3p22 (CTNNB1, P = 0.00013), 4q22 (MEPE, P = 0.0026), 5q14 (MEF2C, P = 1.3×10 -5), 6q25 (ESR1, P = 0.0011), 7p14 (STARD3NL, P = 0.00025), 7q21 (FLJ42280, P = 0.00017), 8q24 (TNFRSF11B, P = 3.4×10 -5), 11p15 (SOX6, P = 0.00033), 11q13 (LRP5, P = 0.0033), 13q14 (TNFSF11, P = 7.5×10 -5), 16q24 (FOXL1, P = 0.0010) and 17q21 (SOST, P = 0.015). Our study marks an early effort towards the challenge of cataloguing bone density variants shared by many ethnicities by testing BMD variants that have been established in Europeans, in East-Asians. © 2010 Styrkarsdottir et al.published_or_final_versio

    Tensor hierarchies, Borcherds algebras and E11

    Full text link
    Gauge deformations of maximal supergravity in D=11-n dimensions generically give rise to a tensor hierarchy of p-form fields that transform in specific representations of the global symmetry group E(n). We derive the formulas defining the hierarchy from a Borcherds superalgebra corresponding to E(n). This explains why the E(n) representations in the tensor hierarchies also appear in the level decomposition of the Borcherds superalgebra. We show that the indefinite Kac-Moody algebra E(11) can be used equivalently to determine these representations, up to p=D, and for arbitrarily large p if E(11) is replaced by E(r) with sufficiently large rank r.Comment: 22 pages. v2: Published version (except for a few minor typos detected after the proofreading, which are now corrected

    Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors

    Full text link
    We consider two dimensional maps preserving a foliation which is uniformly contracting and a one dimensional associated quotient map having exponential convergence to equilibrium (iterates of Lebesgue measure converge exponentially fast to physical measure). We prove that these maps have exponential decay of correlations over a large class of observables. We use this result to deduce exponential decay of correlations for the Poincare maps of a large class of singular hyperbolic flows. From this we deduce logarithm laws for these flows.Comment: 39 pages; 03 figures; proof of Theorem 1 corrected; many typos corrected; improvements on the statements and comments suggested by a referee. Keywords: singular flows, singular-hyperbolic attractor, exponential decay of correlations, exact dimensionality, logarithm la

    Towards a large-scale quantum simulator on diamond surface at room temperature

    Full text link
    Strongly-correlated quantum many-body systems exhibits a variety of exotic phases with long-range quantum correlations, such as spin liquids and supersolids. Despite the rapid increase in computational power of modern computers, the numerical simulation of these complex systems becomes intractable even for a few dozens of particles. Feynman's idea of quantum simulators offers an innovative way to bypass this computational barrier. However, the proposed realizations of such devices either require very low temperatures (ultracold gases in optical lattices, trapped ions, superconducting devices) and considerable technological effort, or are extremely hard to scale in practice (NMR, linear optics). In this work, we propose a new architecture for a scalable quantum simulator that can operate at room temperature. It consists of strongly-interacting nuclear spins attached to the diamond surface by its direct chemical treatment, or by means of a functionalized graphene sheet. The initialization, control and read-out of this quantum simulator can be accomplished with nitrogen-vacancy centers implanted in diamond. The system can be engineered to simulate a wide variety of interesting strongly-correlated models with long-range dipole-dipole interactions. Due to the superior coherence time of nuclear spins and nitrogen-vacancy centers in diamond, our proposal offers new opportunities towards large-scale quantum simulation at room temperatures

    Newsprint coverage of smoking in cars carrying children : a case study of public and scientific opinion driving the policy debate

    Get PDF
    Acknowledgements Date of Acceptance:17/10/2014 Acknowledgements: This project was funded by Cancer Research UK (MC_U130085862) and the Scottish School of Public Health Research. Cancer Research UK and the Scottish School of Public Health Research was not involved in the collection, analysis, and interpretation of data, writing of the manuscript or the decision to submit the manuscript for publication. Shona Hilton, Karen Wood, Josh Bain and Chris Patterson are funded by the UK Medical Research Council as part of the Understandings and Uses of Public Health Research programme (MC_UU_12017/6) at the MRC/CSO Social and Public Health Sciences Unit, University of Glasgow. We thank Alan Pollock who provided assistance with coding.Peer reviewedPublisher PD

    In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae

    Get PDF
    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections

    Large, high quality single-crystals of the new Topological Kondo Insulator, SmB6

    Get PDF
    SmB6 has recently been predicted to be a Topological Kondo Insulator, the first strongly correlated heavy fermion material to exhibit topological surface states. High quality crystals are necessary to investigate the topological properties of this material. Single crystal growth of the rare earth hexaboride, SmB6, has been carried out by the floating zone technique using a high power xenon arc lamp image furnace. Large, high quality single-crystals are obtained by this technique. The crystals produced by the floating zone technique are free of contamination from flux materials and have been characterised by resistivity and magnetisation measurements. These crystals are ideally suited for the investigation of both the surface and bulk properties of SmB6
    corecore