2,917 research outputs found
Efficient Quantum Computation with Probabilistic Quantum Gates
With a combination of the quantum repeater and the cluster state approaches, we show that efficient quantum computation can be constructed even if all the entangling quantum gates only succeed with an arbitrarily small probability p. The required computational overhead scales efficiently both with 1/p and n, where n is the number of qubits in the computation. This approach provides an efficient way to combat noise in a class of quantum computation implementation schemes, where the dominant noise leads to probabilistic signaled errors with an error probability 1-p far beyond any threshold requirement
Trapping atoms using nanoscale quantum vacuum forces
Quantum vacuum forces dictate the interaction between individual atoms and
dielectric surfaces at nanoscale distances. For example, their large strengths
typically overwhelm externally applied forces, which makes it challenging to
controllably interface cold atoms with nearby nanophotonic systems. Here, we
show that it is possible to tailor the vacuum forces themselves to provide
strong trapping potentials. The trapping scheme takes advantage of the
attractive ground state potential and adiabatic dressing with an excited state
whose potential is engineered to be resonantly enhanced and repulsive. This
procedure yields a strong metastable trap, with the fraction of excited state
population scaling inversely with the quality factor of the resonance of the
dielectric structure. We analyze realistic limitations to the trap lifetime and
discuss possible applications that might emerge from the large trap depths and
nanoscale confinement.Comment: 13 pages, 4 figure
Observation of the Vacuum-Rabi Spectrum for One Trapped Atom
The transmission spectrum for one atom strongly coupled to the field of a
high-finesse optical resonator is observed to exhibit a clearly resolved
vacuum-Rabi splitting characteristic of the normal modes in the eigenvalue
spectrum of the atom-cavity system. A new Raman scheme for cooling atomic
motion along the cavity axis enables a complete spectrum to be recorded for an
individual atom trapped within the cavity mode, in contrast to all previous
measurements in cavity QED that have required averaging over many atoms.Comment: 5 pages with 4 figure
Real-Time Cavity QED with Single Atoms
The combination of cold atoms and large coherent coupling enables investigations in a new regime in cavity QED with single-atom trajectories monitored in real time with high signal-to-noise ratio. The underlying “vacuum-Rabi” splitting is clearly reflected in the frequency dependence of atomic transit signals recorded atom by atom, with evidence for mechanical light forces for intracavity photon number <1. The nonlinear optical response of one atom in a cavity is observed to be in accord with the one-atom quantum theory but at variance with semiclassical predictions
Effects of hydrocarbon spills on the temperature and moisture regimes of Cryosols in the Ross Sea region
Hydrocarbon spills have occurred on Antarctic soils where fuel oils are utilized, moved or stored. We investigated the effects of hydrocarbon spills on soil temperature and moisture regimes by comparing the properties of existing oil contaminated sites with those of nearby, uncontaminated, control sites at Scott Base, the old Marble Point camp, and Bull Pass in the Wright Valley. Hydrocarbon levels were elevated in fuel-contaminated samples. Climate stations were installed at all three locations in both contaminated and control sites. In summer at Scott Base and Marble Point the mean weekly maximum near surface (2 cm and 5 cm depth) soil temperatures were warmer (P<0.05), sometimes by more than 10°C, at the contaminated site than the control sites. At Bull Pass there were no statistically significant differences in near-surface soil temperatures between contaminated and control soils. At the Scott Base and Marble Point sites soil albedo was lower, and hydrophobicity was higher, in the contaminated soils than the controls. The higher temperatures at the Scott Base and Marble Point hydrocarbon contaminated sites are attributed to the decreased surface albedo due to soil surface darkening by hydrocarbons. There were no noteworthy differences in moisture retention between contaminated and control sites
Cavity QED with Multiple Hyperfine Levels
We calculate the weak-driving transmission of a linearly polarized cavity
mode strongly coupled to the D2 transition of a single Cesium atom. Results are
relevant to future experiments with microtoroid cavities, where the
single-photon Rabi frequency g exceeds the excited-state hyperfine splittings,
and photonic bandgap resonators, where g is greater than both the excited- and
ground-state splitting.Comment: 6 pages, 10 figure
Incidental gonadal tumors at the time of gonadectomy in women with Swyer syndrome: a case series
Background: Swyer syndrome (46XY complete gonadal dysgenesis) is an uncommonly encountered condition in our population. Gonadectomy is recommended upon diagnosis due to a significant risk of malignant transformation of the dysgenetic gonads, typically to dysgerminoma. Cases: We present 3 cases of women who underwent gonadectomy following a diagnosis of Swyer syndrome. Two of these patients had dysgerminoma confirmed on histopathology. In particular we discuss the macroscopic appearance of the affected gonads and the further management of each case. Summary and Conclusion: Individuals with Swyer syndrome require gonadectomy upon diagnosis of their condition, as part of their multidisciplinary management. For treatment of early stage dysgerminoma, surgical resection of the involved gonad and fallopian tube is curative, again highlighting the need for early intervention
Real-time detection of individual atoms falling through a high-finesse optical cavity
The enhanced coupling between atoms and photons inside a high-finesse optical cavity provides a novel basis for optical measurements that continuously monitor atomic degrees of freedom. We describe an experiment in which cavity quantum-electrodynamic effects are utilized for real-time detection of individual atoms falling through an optical cavity after being dropped from a magneto-optical trap. Our technique permits experiments that are triggered by the presence of a single optimally coupled atom within the cavity mode volume
Squeezed-state generation in optical bistability
Experiments to generate squeezed states of light are described for a collection of two-level atoms within a high-finesse cavity. The investigation is conducted in a regime for which the weak-field coupling of atoms to the cavity mode produces a splitting in the normal mode structure of the atom-field system that is large compared with the atomic linewidth. Reductions in photocurrent noise of 30% (-1.55 dB) below the noise level set by the vacuum state of the field are observed in a balanced homodyne detector. A degree of squeezing of approximately 50% is inferred for the field state in the absence of propagation and detection losses. The observed spectrum of squeezing extends over a very broad range of frequencies (~±75 MHz), with the frequency of best squeezing corresponding to an offset from the optical carrier given by the normal mode splitting
Mach-Zehnder Interferometry at the Heisenberg Limit with coherent and squeezed-vacuum light
We show that the phase sensitivity of a Mach-Zehnder
interferometer fed by a coherent state in one input port and squeezed-vacuum in
the other one is i) independent from the true value of the phase shift and ii)
can reach the Heisenberg limit , where is the
average number of particles of the input states. We also show that the
Cramer-Rao lower bound, , can be saturated for arbitrary values of the squeezing parameter
and the amplitude of the coherent mode by a Bayesian phase
inference protocol.Comment: 4 pages, 4 figure
- …
