1,433 research outputs found
Particle detection apparatus Patent
Particle detector for indicating incidence and energy of minute space particle
Study on the applicability of a precise, accurate method for rapid evaluation of engine and lubricant performance
The development of a procedure for obtaining data related to wear metal determinations in used lubricants is discussed. The procedure makes it possible to obtain rapid, simultaneous determinations of a number of wear metals at levels of parts per thousand to low parts per billion using a small amount of sample. The electrode assembly and instrumentation used in the process are described. Samples of data obtained from tests conducted under controlled conditions are tabulated
Deployable pressurized cell structure for a micrometeoroid detector
This disclosure comprises a plurality of individual pressurized cells which are caused to leak in response to a micrometeoroid penetration, the leak being sensed by appropriate instrumentation. The plurality of cells may be rolled into a compact arrangement such that the volume of the micrometeoroid detector is small and therefore readily packed in a payload of a launch vehicle. Once the payload is placed in orbit, the rolled up cells can be released, pressurized and provide a relatively rigid, large surface area for detecting micrometeoroid penetration
The Dependency of Penetration on the Momentum Per Unit Area of the Impacting Projectile and the Resistance of Materials to Penetration
The results of this investigation indicate that the penetration of projectiles into quasi-infinite targets can be correlated as a function of the maximum momentum per unit area possessed by the projectiles. The penetration of projectiles into aluminum, copper, and steel targets was found to be a linear function while the penetration into lead targets was a nonlinear function of the momentum per unit area of the impacting projectiles. Penetration varied inversely as the projectile density and the elastic modulus of the target material for a given projectile momentum per unit area. Crater volumes were found to be a linear function of the kinetic energy of the projectile, the greater volumes being obtained in the target materials which had the lowest yield strength and the lowest speed of sound
Lightning Protection and Structural Bonding for the B2 Test Stand
With the privatization of the space industry, NASA has entered a new era. To explore deeper parts of the solar system, NASA is developing a new spacecraft, the Space Launch System (SLS), capable of reaching these destinations, such as an asteroid or Mars. However, the test stand that is capable of testing the stage has been unused for many years. In addition to the updating/repair of the stand, more steel is being added to fully support the SLS. With all these modifications, the lightning protection system must be brought up to code to assure the protection of all personnel and assets. Structural bonding is a part of the lightning protection system. The focus of this project was to assure proper structural bonding. To begin, all relevant technical standards and the construction specifications were reviewed. This included both the specifications for the lightning protection and for general construction. The drawings were reviewed as well. From the drawings, bolted structural joints were reviewed to determine whether bonding was necessary. Several bolted joints were determined to need bonding according to the notes in the drawings. This exceeds the industry standards. The bolted joints are an electrically continuous joint. During tests, the stand experiences heavy vibration that may weaken the continuity of the bolted joint. Therefore, the secondary bonding is implemented to ensure that the structural joint has low resistance. If the structural joint has a high resistance because of corrosion, a potential gradient can occur that can cause a side flash. Damage, injury, or death can occur from a side flash so they are to be prevented. A list of the identified structural joints was compiled and sent to the contractor to be bonded. That covers the scope of this project
Micrometeoroid velocity measuring device Patent
Particle detector for measuring micrometeoroid velocity in spac
Materials International Space Station Experiment - 6A and 6B
Materials on the International Space Station Experiment 6 (MISSE-6A and 6B) is a test bed for materials and coatings attached to the outside of the space station that are being evaluated for the effects of atomic oxygen, direct sunlight, radiation and extremes of heat and cold. This experiment allows the development and testing of new materials to better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials in space, leading to the design of stronger, more durable spacecraft components
Long Duration Exposure Facility (LDEF) space environments overview
The Long Duration Exposure Facility (LDEF) was retrieved from Earth orbit in January 1990 after spending almost six years in space. It had flown in a near-circular orbit with an inclination of 28.5 degrees. Initially, the orbit altitude was approximately 257 nautical miles; however, when the LDEF was retrieved the orbit altitude had decayed to approximately 179 nautical miles. The LDEF was passively stabilized about three axes while in free flight, making it an ideal platform for exposing experiments which were measuring the environments of near-Earth space and investigating the long-term effects of these environments on spacecraft. A brief overview of the encountered environments that were of most interest to the LDEF investigators is presented
Micrometeoroid penetration measuring device Patent
Measuring micrometeroid depth of penetration into various material
- …
