1,641 research outputs found

    The future of coffee and cocoa agroforestry in a warmer Mesoamerica

    Get PDF
    Climate change threatens cofee production and the livelihoods of thousands of families in Mesoamerica that depend on it. Replacing cofee with cocoa and integrating trees in combined agroforestry systems to ameliorate abiotic stress are among the proposed alternatives to overcome this challenge. These two alternatives do not consider the vulnerability of cocoa and tree species commonly used in agroforestry plantations to future climate conditions. We assessed the suitability of these alternatives by identifying the potential changes in the distribution of cofee, cocoa and the 100 most common agroforestry trees found in Mesoamerica. Here we show that cocoa could potentially become an alternative in most of cofee vulnerable areas. Agroforestry with currently preferred tree species is highly vulnerable to future climate change. Transforming agroforestry systems by changing tree species composition may be the best approach to adapt most of the cofee and cocoa production areas. Our results stress the urgency for land use planning considering climate change efects and to assess new combinations of agroforestry species in cofee and cocoa plantations in Mesoamerica

    The Effects of Conceptual Processing Versus Suppression on Analogue PTSD Symptoms after a Distressing Film

    Get PDF
    Abstract BACKGROUND: Researchers have begun to scrutinize the assumption that active processing in response to a traumatic event is beneficial whereas avoidance of thoughts, emotions and reminders about the traumatic event is detrimental. Indications that avoidance is not always detrimental come from studies on grief and debriefing. AIMS: In an analogue experimental study, the hypothesis was tested that conceptually-driven processing immediately after a distressing film is more successful in reducing analogue PTSD symptoms than suppression of thoughts and images related to the film. METHOD: Ninety students watched a distressing film after which they were instructed to either elaborate on the meaning of the film (conceptual processing) (n = 31), suppress all thoughts and images of the film by performing a task (n = 29), or were given no instruction (n = 30). Four hours later, analogue PTSD symptoms were assessed. RESULTS: The results showed that conceptually-driven processing does not result in fewer analogue PTSD symptoms than suppression. CONCLUSIONS: It is speculated that suppression may only be dysfunctional when individuals interpret their symptoms negatively or when suppression is believed to be dysfunctional

    Orienting versus inhibition in the concealed information test: different cognitive processes drive different physiological measures

    Get PDF
    The Concealed Information Test (CIT) provides a valid tool for psychophysiological detection of concealed knowledge. However, its precise theoretical underpinnings remain a matter of debate. The differential physiological responses elicited by concealed, relevant items, relative to control items, were traditionally explained as reflecting an orienting response (OR). According to an alternative account, these responses reflect attempts to inhibit arousal. The present study examined whether and to what extent CIT detection efficiency is affected by instructions aimed at manipulating arousal inhibition (AI). One hundred and forty-eight undergraduate students completed a CIT, while electrodermal, cardiac, and respiratory measures were recorded. Half of the participants were requested to imagine that they are suspected of committing a crime and were motivated to avoid detection (presumably eliciting both OR and AI), while the other half were requested to imagine that they are witnesses of a crime and were motivated to be detected (presumably eliciting OR only). All participants were further requested to remain silent throughout the test. In both conditions, concealed items led to a similar increase in skin conductance as compared to the control items. However, the typically observed heart rate deceleration and respiratory suppression were found in suspects, but not in witnesses. These data imply that different mechanisms drive the responding of different psychophysiological measures used in the CIT, with skin conductance reflecting OR, and heart rate and respiration primarily reflecting AI

    The genomic signature of trait-associated variants

    Get PDF
    BACKGROUND: Genome-wide association studies have identified thousands of SNP variants associated with hundreds of phenotypes. For most associations the causal variants and the molecular mechanisms underlying pathogenesis remain unknown. Exploration of the underlying functional annotations of trait-associated loci has thrown some light on their potential roles in pathogenesis. However, there are some shortcomings of the methods used to date, which may undermine efforts to prioritize variants for further analyses. Here, we introduce and apply novel methods to rigorously identify annotation classes showing enrichment or depletion of trait-associated variants taking into account the underlying associations due to co-location of different functional annotations and linkage disequilibrium. RESULTS: We assessed enrichment and depletion of variants in publicly available annotation classes such as genic regions, regulatory features, measures of conservation, and patterns of histone modifications. We used logistic regression to build a multivariate model that identified the most influential functional annotations for trait-association status of genome-wide significant variants. SNPs associated with all of the enriched annotations were 8 times more likely to be trait-associated variants than SNPs annotated with none of them. Annotations associated with chromatin state together with prior knowledge of the existence of a local expression QTL (eQTL) were the most important factors in the final logistic regression model. Surprisingly, despite the widespread use of evolutionary conservation to prioritize variants for study we find only modest enrichment of trait-associated SNPs in conserved regions. CONCLUSION: We established odds ratios of functional annotations that are more likely to contain significantly trait-associated SNPs, for the purpose of prioritizing GWAS hits for further studies. Additionally, we estimated the relative and combined influence of the different genomic annotations, which may facilitate future prioritization methods by adding substantial information

    First Steps in Using Multi-Voxel Pattern Analysis to Disentangle Neural Processes Underlying Generalization of Spider Fear

    Get PDF
    A core symptom of anxiety disorders is the tendency to interpret ambiguous information as threatening. Using electroencephalography and blood oxygenation level dependent magnetic resonance imaging (BOLD-MRI), several studies have begun to elucidate brain processes involved in fear-related perceptual biases, but thus far mainly found evidence for general hypervigilance in high fearful individuals. Recently, multi-voxel pattern analysis (MVPA) has become popular for decoding cognitive states from distributed patterns of neural activation. Here, we used this technique to assess whether biased fear generalization, characteristic of clinical fear, is already present during the initial perception and categorization of a stimulus, or emerges during the subsequent interpretation of a stimulus. Individuals with low spider fear (n = 20) and high spider fear (n = 18) underwent functional MRI scanning while viewing series of schematic flowers morphing to spiders. In line with previous studies, individuals with high fear of spiders were behaviorally more likely to classify ambiguous morphs as spiders than individuals with low fear of spiders. Univariate analyses of BOLD-MRI data revealed stronger activation toward spider pictures in high fearful individuals compared to low fearful individuals in numerous areas. Yet, neither average activation, nor support vector machine classification (i.e., a form of MVPA) matched the behavioral results – i.e., a biased response toward ambiguous stimuli – in any of the regions of interest. This may point to limitations of the current design, and to challenges associated with classifying emotional and neutral stimuli in groups that differ in their judgment of emotionality. Improvements for future research are suggested

    Suitability of key Central American agroforestry species under future climates: an Atlas.

    Get PDF
    This atlas provides habitat suitability maps for 54 species that are widely used in Central America for shade in coffee or cocoa agroforestry systems. The 54 species represent 24 fruit species, 24 timber species and 6 species used for soil fertility improvement. Suitability maps correspond to the baseline climate (1960-1990) and 2050 climates predicted for Representative Concentration Pathways (RCP) 4.5 and 8.5. Habitat was classified as suitable in future climates if a minimum of 12 out of 17 downscaled Global Circulation Models predicted suitable climates. Details of the methodology of ensemble suitability modelling with the BiodiversityR package are provided in the atlas. The atlas was developed to support climate change oriented initiatives for diversification and conservation of forest genetic resources across Central America. Farmers, scientists and technicians can use the atlas to identify suitable and vulnerable areas for shade species and develop strategies for climate change adaptation. This work has been possible by the financial support of the CGIAR research program on Forests, Trees and Agroforestry (FTA; supported by the CGIAR Fund Donors); the CGIAR research program on Climate Change Agriculture and Food Security (CCAFS; supported by the CGIAR Fund Donors) and HIVOS. The authors of this atlas are scientists of Bioversity International, CATIE and the World Agroforestry Centre

    Enlargement of ribbons in zebrafish hair cells increases calcium currents, but disrupts afferent spontaneous activity and timing of stimulus onset.

    Get PDF
    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure-the synaptic ribbon-that organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Taken together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons.SIGNIFICANCE STATEMENTNumerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset-a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence sensory encoding, and give further insight into how hair cells transduce signals that cover a wide dynamic range of stimuli

    Pseudo Identities Based on Fingerprint Characteristics

    Get PDF
    This paper presents the integrated project TURBINE which is funded under the EU 7th research framework programme. This research is a multi-disciplinary effort on privacy enhancing technology, combining innovative developments in cryptography and fingerprint recognition. The objective of this project is to provide a breakthrough in electronic authentication for various applications in the physical world and on the Internet. On the one hand it will provide secure identity verification thanks to fingerprint recognition. On the other hand it will reliably protect the biometric data through advanced cryptography technology. In concrete terms, it will provide the assurance that (i) the data used for the authentication, generated from the fingerprint, cannot be used to restore the original fingerprint sample, (ii) the individual will be able to create different "pseudo-identities" for different applications with the same fingerprint, whilst ensuring that these different identities (and hence the related personal data) cannot be linked to each other, and (iii) the individual is enabled to revoke an biometric identifier (pseudo-identity) for a given application in case it should not be used anymore
    corecore