6,464 research outputs found
The effect of combined supplementation of carbohydrates and creatine on anaerobic performance.
The purpose of the study was to examine the effect of creatine (Cr) supplementation on anaerobic performance when ingesting creatine and carbohydrates (CHO) together. Twenty male physical education students comprised the two experimental (CR and CRCHO) and one control (CON) groups of the study. All groups performed three 30 s anaerobic Wingate tests (AWTs) interspersed with 6 minutes of recovery. The CR group (n = 7) ingested 5 g of Cr 5 times per day for 4 days. Subjects in the CRCHO group (n = 6) ingested the same quantity but additionally after each 5 g dose of Cr consumed 500 ml of a commercially available energy drink containing 100 g of simple sugars. Over all three AWTs average mean power improved significantly compared to baseline for the CR group (5.51%) but not for the CRCHO group (3.06%). Mean power for the second AWT was improved following the acute loading for the CR group only (4.54%) and for the third AWT for both CR (8.49%) and CRCHO (5.75%) groups. Over all three AWTs a significant change was recorded in average peak power following the acute loading for the CR group (8.26%) but not for the CRCHO group (4.11%). Peak power was significantly improved following the loading only for the CR group during the third AWT (19.79%). No changes in AWT performance were recorded for the CON group after intervention. The findings of the present study suggest that ingesting creatine together with carbohydrates will not further improve performance compared to the ingestion of creatine only
Recommended from our members
Coping with metastatic melanoma: the last year of life.
BackgroundFew longitudinal studies have concurrently investigated cognitive appraisal, coping and psychological adjustment in patients with terminal cancer. This study aimed to (i) consider patterns of change in these variables during the last year of life and (ii) consider covariates associated with patients' psychological adjustment.Methods and patientsQuestionnaires were sent to a cohort of stage IV melanoma patients seen at the Sydney Melanoma Unit between 1991 and 1996, approximately every 3 months, for up to 2 years. A sub-sample of 110 patients completed at least one questionnaire in the last year of life. Repeated measures linear regression was used to model cognitive appraisal, coping and psychological adjustment.ResultsIn the last year of life, patients' cognitive appraisal of their disease remained relatively stable, whereas their use of active coping strategies increased (p=0. 04). There was some deterioration in psychological adjustment, particularly in patients' ability to minimize the impact of cancer on daily life (p=0.03), but this effect did not remain significant when patients' level of tiredness was included in the model. Cognitive appraisal, coping style and quality of life indicators were all associated with psychological adjustment.ConclusionThese findings suggest that while patients work hard to actively cope with their disease, they experience increasing levels of tiredness, and deterioration in their mood and ability to function in their daily lives
Universality of electron accumulation at wurtzite c- and a-plane and zinc-blende InN surfaces
Electron accumulation is found to occur at the surface of wurtzite (112¯0), (0001), and (0001¯) and zinc-blende (001) InN using x-ray photoemission spectroscopy. The accumulation is shown to be a universal feature of InN surfaces. This is due to the low Г-point conduction band minimum lying
significantly below the charge neutrality level
P2X receptors: epithelial ion channels and regulators of salt and water transport.
When the results from electrophysiological studies of renal epithelial cells are combined with data from in vivo tubule microperfusion experiments and immunohistochemical surveys of the nephron, the accumulated evidence suggests that ATP-gated ion channels, P2X receptors, play a specialized role in the regulation of ion and water movement across the renal tubule and are integral to electrolyte and fluid homeostasis. In this short review, we discuss the concept of P2X receptors as regulators of salt and water salvage pathways, as well as acknowledging their accepted role as ATP-gated ion channels
The two-hour orbit of a binary millisecond X-ray pulsar
Typical radio pulsars are magnetized neutron stars that are born rapidly
rotating and slow down as they age on time scales of 10 to 100 million years.
However, millisecond radio pulsars spin very rapidly even though many are
billions of years old. The most compelling explanation is that they have been
"spun up" by the transfer of angular momentum during accretion of material from
a companion star in so-called low-mass X-ray binary systems, LMXBs. (LMXBs
consist of a neutron star or black hole accreting from a companion less than
one solar mass.) The recent detection of coherent X-ray pulsations with a
millisecond period from a suspected LMXB system appears to confirm this link.
Here we report observations showing that the orbital period of this binary
system is two hours, which establishes it as an LMXB. We also find an apparent
modulation of the X-ray flux at the orbital period (at the two per cent level),
with a broad minimum when the pulsar is behind this low-mass companion star.
This system seems closely related to the "black widow" millisecond radio
pulsars, which are evaporating their companions through irradiation. It may
appear as an eclipsing radio pulsar during periods of X-ray quiescence.Comment: 4 pages with 1 figure. Style files included. Fig. 2 deleted and text
revised. To appear in Nature. Press embargo until 18:00 GMT on 1998 July 2
A realistic pattern of fermion masses from a five-dimensional SO(10) model
We provide a unified description of fermion masses and mixing angles in the
framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa
couplings of order unity. The space-time is five dimensional and the extra flat
spatial dimension is compactified on the orbifold ,
leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions
are localised. The gauge symmetry breaking is completed by means of a rather
economic scalar sector, avoiding the doublet-triplet splitting problem. The
matter fields live in the bulk and their massless modes get exponential
profiles, which naturally explain the mass hierarchy of the different fermion
generations. Quarks and leptons properties are naturally reproduced by a
mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of
bulk masses in terms of a single parameter. The model provides a realistic
pattern of fermion masses and mixing angles for large values of . It
favours normally ordered neutrino mass spectrum with the lightest neutrino mass
below 0.01 eV and no preference for leptonic CP violating phases. The right
handed neutrino mass spectrum is very hierarchical and does not allow for
thermal leptogenesis. We analyse several variants of the basic framework and
find that the results concerning the fermion spectrum are remarkably stable.Comment: 30 pages, 7 figures, 4 table
Gene Function Classification Using Bayesian Models with Hierarchy-Based Priors
We investigate the application of hierarchical classification schemes to the
annotation of gene function based on several characteristics of protein
sequences including phylogenic descriptors, sequence based attributes, and
predicted secondary structure. We discuss three Bayesian models and compare
their performance in terms of predictive accuracy. These models are the
ordinary multinomial logit (MNL) model, a hierarchical model based on a set of
nested MNL models, and a MNL model with a prior that introduces correlations
between the parameters for classes that are nearby in the hierarchy. We also
provide a new scheme for combining different sources of information. We use
these models to predict the functional class of Open Reading Frames (ORFs) from
the E. coli genome. The results from all three models show substantial
improvement over previous methods, which were based on the C5 algorithm. The
MNL model using a prior based on the hierarchy outperforms both the
non-hierarchical MNL model and the nested MNL model. In contrast to previous
attempts at combining these sources of information, our approach results in a
higher accuracy rate when compared to models that use each data source alone.
Together, these results show that gene function can be predicted with higher
accuracy than previously achieved, using Bayesian models that incorporate
suitable prior information
Comparative algological and bacteriological examinations on biofilms developed on different substrata in a shallow soda lake
According to the European Water Framework Directives, benthic diatoms of lakes are a tool for ecological status assessment. In this study, we followed an integrative sample analysis approach, in order to find an appropriate substratum for the water qualification-oriented biomonitoring of a shallow soda lake, Lake Velencei. Six types of substrata (five artificial and one natural), i.e., andesite, granite, polycarbonate, old reed stems, Plexiglass discs and green reed, were sampled in May and in November. We analysed total alga and diatom composition, chlorophyll a content of the periphyton, surface tension and roughness of the substrata and carbon source utilisation of microbial communities. Water quality index was calculated based on diatom composition. Moreover, using a novel statistical tool, a self-organising map, we related algal composition to substratum types. Biofilms on plastic substrates deviated to a great extent from the stone and reed substrata, with regard to the parameters measured, whereas the biofilms developing on reed and stone substrata were quite similar. We conclude that for water quality monitoring purposes, sampling from green reed during springtime is not recommended, since this is the colonization time of periphyton on the newly growing reed, but it may be appropriate from the second half of the vegetation period. Stone and artificially placed old reed substrata may be appropriate for biomonitoring of shallow soda lakes in both spring and autumn since they showed in both seasons similar results regarding all measured features
Spontaneous R-Parity Violation, Flavor Symmetry and Tribimaximal Mixing
We explore the possibility of spontaneous R parity violation in the context
of flavor symmetry. Our model contains singlet matter chiral superfields which are arranged as triplet of
and as well as few additional Higgs chiral superfields which are singlet
under MSSM gauge group and belong to triplet and singlet representation under
the flavor symmetry. R parity is broken spontaneously by the vacuum
expectation values of the different sneutrino fields and hence we have
neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in
our model, in addition to the standard model neutrino- gauge singlet neutrino,
gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we
have an extended neutral fermion mass matrix. We explore the low energy
neutrino mass matrix for our model and point out that with some specific
constraints between the sneutrino vacuum expectation values as well as the MSSM
gauge singlet Higgs vacuum expectation values, the low energy neutrino mass
matrix will lead to a tribimaximal mixing matrix. We also analyze the potential
minimization for our model and show that one can realize a higher vacuum
expectation value of the singlet
sneutrino fields even when the other sneutrino vacuum expectation values are
extremely small or even zero.Comment: 18 page
- …
