3,291 research outputs found

    Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos

    Full text link
    We discuss a new variant of the E6 inspired supersymmetric standard model (E6SSM) in which the two inert singlinos are exactly massless and the dark matter candidate has a dominant bino component. A successful relic density is achieved via a novel mechanism in which the bino scatters inelastically into heavier inert Higgsinos during the time of thermal freeze-out. The two massless inert singlinos contribute to the effective number of neutrino species at the time of Big Bang Nucleosynthesis, where the precise contribution depends on the mass of the Z' which keeps them in equilibrium. For example for mZ' > 1300 GeV we find Neff \approx 3.2, where the smallness of the additional contribution is due to entropy dilution. We study a few benchmark points in the constrained E6SSM with massless inert singlinos to illustrate this new scenario.Comment: 24 pages, revised for publication in JHE

    A universal protocol to generate consensus level genome sequences for foot-and-mouth disease virus and other positive-sense polyadenylated RNA viruses using the Illumina MiSeq

    Get PDF
    BACKGROUND: Next-Generation Sequencing (NGS) is revolutionizing molecular epidemiology by providing new approaches to undertake whole genome sequencing (WGS) in diagnostic settings for a variety of human and veterinary pathogens. Previous sequencing protocols have been subject to biases such as those encountered during PCR amplification and cell culture, or are restricted by the need for large quantities of starting material. We describe here a simple and robust methodology for the generation of whole genome sequences on the Illumina MiSeq. This protocol is specific for foot-and-mouth disease virus (FMDV) or other polyadenylated RNA viruses and circumvents both the use of PCR and the requirement for large amounts of initial template. RESULTS: The protocol was successfully validated using five FMDV positive clinical samples from the 2001 epidemic in the United Kingdom, as well as a panel of representative viruses from all seven serotypes. In addition, this protocol was successfully used to recover 94% of an FMDV genome that had previously been identified as cell culture negative. Genome sequences from three other non-FMDV polyadenylated RNA viruses (EMCV, ERAV, VESV) were also obtained with minor protocol amendments. We calculated that a minimum coverage depth of 22 reads was required to produce an accurate consensus sequence for FMDV O. This was achieved in 5 FMDV/O/UKG isolates and the type O FMDV from the serotype panel with the exception of the 5′ genomic termini and area immediately flanking the poly(C) region. CONCLUSIONS: We have developed a universal WGS method for FMDV and other polyadenylated RNA viruses. This method works successfully from a limited quantity of starting material and eliminates the requirement for genome-specific PCR amplification. This protocol has the potential to generate consensus-level sequences within a routine high-throughput diagnostic environment

    Ultraviolet Completion of Flavour Models

    Full text link
    Effective Flavour Models do not address questions related to the nature of the fundamental renormalisable theory at high energies. We study the ultraviolet completion of Flavour Models, which in general has the advantage of improving the predictivity of the effective models. In order to illustrate the important features we provide minimal completions for two known A4 models. We discuss the phenomenological implications of the explicit completions, such as lepton flavour violating contributions that arise through the exchange of messenger fields.Comment: 18 pages, 8 figure

    Investigation of Non-Stable Processes in Close Binary Ry Scuti

    Full text link
    We present results of reanalysis of old electrophotometric data of early type close binary system RY Scuti obtained at the Abastumani Astrophysical Observatory, Georgia, during 1972-1990 years and at the Maidanak Observatory, Uzbekistan, during 1979-1991 years. It is revealed non-stable processes in RY Sct from period to period, from month to month and from year to year. This variation consists from the hundredths up to the tenths of a magnitude. Furthermore, periodical changes in the system's light are displayed near the first maximum on timescales of a few years. That is of great interest with regard to some similar variations seen in luminous blue variable (LBV) stars. This also could be closely related to the question of why RY Sct ejected its nebula.Comment: 11 pages, 6 figures, 2 table

    You turn me cold: evidence for temperature contagion

    Get PDF
    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP

    A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM

    Full text link
    Motivated by the recent LHC hints of a Higgs boson around 125 GeV, we assume a SM-like Higgs with the mass 123-127 GeV and study its implication in low energy SUSY by comparing the MSSM and NMSSM. We consider various experimental constraints at 2-sigma level (including the muon g-2 and the dark matter relic density) and perform a comprehensive scan over the parameter space of each model. Then in the parameter space which is allowed by current experimental constraints and also predicts a SM-like Higgs in 123-127 GeV, we examine the properties of the sensitive parameters (like the top squark mass and the trilinear coupling A_t) and calculate the rates of the di-photon signal and the VV^* (V=W,Z) signals at the LHC. Our typical findings are: (i) In the MSSM the top squark and A_t must be large and thus incur some fine-tuning, which can be much ameliorated in the NMSSM; (ii) In the MSSM a light stau is needed to enhance the di-photon rate of the SM-like Higgs to exceed its SM prediction, while in the NMSSM the di-photon rate can be readily enhanced in several ways; (iii) In the MSSM the signal rates of pp -> h -> VV^* at the LHC are never enhanced compared with their SM predictions, while in the NMSSM they may get enhanced significantly; (iv) A large part of the parameter space so far survived will be soon covered by the expected XENON100(2012) sensitivity (especially for the NMSSM).Comment: Version in JHEP (refs added

    Lepton flavour violation in the MSSM

    Full text link
    We derive new constraints on the quantities delta_{XY}^{ij}, X,Y=L,R, which parametrise the flavour-off-diagonal terms of the charged slepton mass matrix in the MSSM. Considering mass and anomalous magnetic moment of the electron we obtain the bound |delta^{13}_{LL} delta^{13}_{RR}|<0.1 for tan beta=50, which involves the poorly constrained element delta^{13}_{RR}. We improve the predictions for the decays tau -> mu gamma, tau -> e gamma and mu -> e gamma by including two-loop corrections which are enhanced if tan beta is large. The finite renormalisation of the PMNS matrix from soft SUSY-breaking terms is derived and applied to the charged-Higgs-lepton vertex. We find that the experimental bound on BR(tau -> e gamma) severely limits the size of the MSSM loop correction to the PMNS element U_{e3}, which is important for the proper interpretation of a future U_{e3} measurement. Subsequently we confront our new values for delta^{ij}_{LL} with a GUT analysis. Further, we include the effects of dimension-5 Yukawa terms, which are needed to fix the Yukawa unification of the first two generations. If universal supersymmetry breaking occurs above the GUT scale, we find the flavour structure of the dimension-5 Yukawa couplings tightly constrained by mu -> e gamma.Comment: 37 pages, 15 figures; typo in Equation (35) and (49) correcte

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    Spontaneous R-Parity Violation, A4A_4 Flavor Symmetry and Tribimaximal Mixing

    Full text link
    We explore the possibility of spontaneous R parity violation in the context of A4A_4 flavor symmetry. Our model contains SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet matter chiral superfields which are arranged as triplet of A4A_4 and as well as few additional Higgs chiral superfields which are singlet under MSSM gauge group and belong to triplet and singlet representation under the A4A_4 flavor symmetry. R parity is broken spontaneously by the vacuum expectation values of the different sneutrino fields and hence we have neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in our model, in addition to the standard model neutrino- gauge singlet neutrino, gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we have an extended neutral fermion mass matrix. We explore the low energy neutrino mass matrix for our model and point out that with some specific constraints between the sneutrino vacuum expectation values as well as the MSSM gauge singlet Higgs vacuum expectation values, the low energy neutrino mass matrix will lead to a tribimaximal mixing matrix. We also analyze the potential minimization for our model and show that one can realize a higher vacuum expectation value of the SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet sneutrino fields even when the other sneutrino vacuum expectation values are extremely small or even zero.Comment: 18 page
    corecore