3,291 research outputs found
Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos
We discuss a new variant of the E6 inspired supersymmetric standard model
(E6SSM) in which the two inert singlinos are exactly massless and the dark
matter candidate has a dominant bino component. A successful relic density is
achieved via a novel mechanism in which the bino scatters inelastically into
heavier inert Higgsinos during the time of thermal freeze-out. The two massless
inert singlinos contribute to the effective number of neutrino species at the
time of Big Bang Nucleosynthesis, where the precise contribution depends on the
mass of the Z' which keeps them in equilibrium. For example for mZ' > 1300 GeV
we find Neff \approx 3.2, where the smallness of the additional contribution is
due to entropy dilution. We study a few benchmark points in the constrained
E6SSM with massless inert singlinos to illustrate this new scenario.Comment: 24 pages, revised for publication in JHE
A universal protocol to generate consensus level genome sequences for foot-and-mouth disease virus and other positive-sense polyadenylated RNA viruses using the Illumina MiSeq
BACKGROUND: Next-Generation Sequencing (NGS) is revolutionizing molecular epidemiology by providing new
approaches to undertake whole genome sequencing (WGS) in diagnostic settings for a variety of human and
veterinary pathogens. Previous sequencing protocols have been subject to biases such as those encountered
during PCR amplification and cell culture, or are restricted by the need for large quantities of starting material. We
describe here a simple and robust methodology for the generation of whole genome sequences on the Illumina
MiSeq. This protocol is specific for foot-and-mouth disease virus (FMDV) or other polyadenylated RNA viruses and
circumvents both the use of PCR and the requirement for large amounts of initial template.
RESULTS: The protocol was successfully validated using five FMDV positive clinical samples from the 2001 epidemic
in the United Kingdom, as well as a panel of representative viruses from all seven serotypes. In addition, this
protocol was successfully used to recover 94% of an FMDV genome that had previously been identified as cell
culture negative. Genome sequences from three other non-FMDV polyadenylated RNA viruses (EMCV, ERAV, VESV)
were also obtained with minor protocol amendments. We calculated that a minimum coverage depth of 22 reads
was required to produce an accurate consensus sequence for FMDV O. This was achieved in 5 FMDV/O/UKG isolates
and the type O FMDV from the serotype panel with the exception of the 5′ genomic termini and area immediately
flanking the poly(C) region.
CONCLUSIONS: We have developed a universal WGS method for FMDV and other polyadenylated RNA viruses.
This method works successfully from a limited quantity of starting material and eliminates the requirement for
genome-specific PCR amplification. This protocol has the potential to generate consensus-level sequences within a
routine high-throughput diagnostic environment
Ultraviolet Completion of Flavour Models
Effective Flavour Models do not address questions related to the nature of
the fundamental renormalisable theory at high energies. We study the
ultraviolet completion of Flavour Models, which in general has the advantage of
improving the predictivity of the effective models. In order to illustrate the
important features we provide minimal completions for two known A4 models. We
discuss the phenomenological implications of the explicit completions, such as
lepton flavour violating contributions that arise through the exchange of
messenger fields.Comment: 18 pages, 8 figure
Investigation of Non-Stable Processes in Close Binary Ry Scuti
We present results of reanalysis of old electrophotometric data of early type
close binary system RY Scuti obtained at the Abastumani Astrophysical
Observatory, Georgia, during 1972-1990 years and at the Maidanak Observatory,
Uzbekistan, during 1979-1991 years. It is revealed non-stable processes in RY
Sct from period to period, from month to month and from year to year. This
variation consists from the hundredths up to the tenths of a magnitude.
Furthermore, periodical changes in the system's light are displayed near the
first maximum on timescales of a few years. That is of great interest with
regard to some similar variations seen in luminous blue variable (LBV) stars.
This also could be closely related to the question of why RY Sct ejected its
nebula.Comment: 11 pages, 6 figures, 2 table
You turn me cold: evidence for temperature contagion
Introduction
During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer.
Methods
Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand).
Results
Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy.
Conclusions
We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation
Synthesis and structural characterization of a mimetic membrane-anchored prion protein
During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP
A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM
Motivated by the recent LHC hints of a Higgs boson around 125 GeV, we assume
a SM-like Higgs with the mass 123-127 GeV and study its implication in low
energy SUSY by comparing the MSSM and NMSSM. We consider various experimental
constraints at 2-sigma level (including the muon g-2 and the dark matter relic
density) and perform a comprehensive scan over the parameter space of each
model. Then in the parameter space which is allowed by current experimental
constraints and also predicts a SM-like Higgs in 123-127 GeV, we examine the
properties of the sensitive parameters (like the top squark mass and the
trilinear coupling A_t) and calculate the rates of the di-photon signal and the
VV^* (V=W,Z) signals at the LHC. Our typical findings are: (i) In the MSSM the
top squark and A_t must be large and thus incur some fine-tuning, which can be
much ameliorated in the NMSSM; (ii) In the MSSM a light stau is needed to
enhance the di-photon rate of the SM-like Higgs to exceed its SM prediction,
while in the NMSSM the di-photon rate can be readily enhanced in several ways;
(iii) In the MSSM the signal rates of pp -> h -> VV^* at the LHC are never
enhanced compared with their SM predictions, while in the NMSSM they may get
enhanced significantly; (iv) A large part of the parameter space so far
survived will be soon covered by the expected XENON100(2012) sensitivity
(especially for the NMSSM).Comment: Version in JHEP (refs added
Lepton flavour violation in the MSSM
We derive new constraints on the quantities delta_{XY}^{ij}, X,Y=L,R, which
parametrise the flavour-off-diagonal terms of the charged slepton mass matrix
in the MSSM. Considering mass and anomalous magnetic moment of the electron we
obtain the bound |delta^{13}_{LL} delta^{13}_{RR}|<0.1 for tan beta=50, which
involves the poorly constrained element delta^{13}_{RR}. We improve the
predictions for the decays tau -> mu gamma, tau -> e gamma and mu -> e gamma by
including two-loop corrections which are enhanced if tan beta is large. The
finite renormalisation of the PMNS matrix from soft SUSY-breaking terms is
derived and applied to the charged-Higgs-lepton vertex. We find that the
experimental bound on BR(tau -> e gamma) severely limits the size of the MSSM
loop correction to the PMNS element U_{e3}, which is important for the proper
interpretation of a future U_{e3} measurement. Subsequently we confront our new
values for delta^{ij}_{LL} with a GUT analysis. Further, we include the effects
of dimension-5 Yukawa terms, which are needed to fix the Yukawa unification of
the first two generations. If universal supersymmetry breaking occurs above the
GUT scale, we find the flavour structure of the dimension-5 Yukawa couplings
tightly constrained by mu -> e gamma.Comment: 37 pages, 15 figures; typo in Equation (35) and (49) correcte
The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model
Both Grand Unified symmetries and discrete flavour symmetries are appealing
ways to describe apparent structures in the gauge and flavour sectors of the
Standard Model. Both symmetries put constraints on the high energy behaviour of
the theory. This can give rise to unexpected interplay when building models
that possess both symmetries. We investigate on the possibility to combine a
Pati-Salam model with the discrete flavour symmetry that gives rise to
quark-lepton complementarity. Under appropriate assumptions at the GUT scale,
the model reproduces fermion masses and mixings both in the quark and in the
lepton sectors. We show that in particular the Higgs sector and the running
Yukawa couplings are strongly affected by the combined constraints of the Grand
Unified and family symmetries. This in turn reduces the phenomenologically
viable parameter space, with high energy mass scales confined to a small region
and some parameters in the neutrino sector slightly unnatural. In the allowed
regions, we can reproduce the quark masses and the CKM matrix. In the lepton
sector, we reproduce the charged lepton masses, including bottom-tau
unification and the Georgi-Jarlskog relation as well as the two known angles of
the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse
hierarchy, and only allowing the neutrino parameters to spread into a range of
values between and , with .
Finally, our model suggests that the reactor mixing angle is close to its
current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for
publication in JHE
Spontaneous R-Parity Violation, Flavor Symmetry and Tribimaximal Mixing
We explore the possibility of spontaneous R parity violation in the context
of flavor symmetry. Our model contains singlet matter chiral superfields which are arranged as triplet of
and as well as few additional Higgs chiral superfields which are singlet
under MSSM gauge group and belong to triplet and singlet representation under
the flavor symmetry. R parity is broken spontaneously by the vacuum
expectation values of the different sneutrino fields and hence we have
neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in
our model, in addition to the standard model neutrino- gauge singlet neutrino,
gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we
have an extended neutral fermion mass matrix. We explore the low energy
neutrino mass matrix for our model and point out that with some specific
constraints between the sneutrino vacuum expectation values as well as the MSSM
gauge singlet Higgs vacuum expectation values, the low energy neutrino mass
matrix will lead to a tribimaximal mixing matrix. We also analyze the potential
minimization for our model and show that one can realize a higher vacuum
expectation value of the singlet
sneutrino fields even when the other sneutrino vacuum expectation values are
extremely small or even zero.Comment: 18 page
- …
