36 research outputs found
Low-density series expansions for directed percolation IV. Temporal disorder
We introduce a model for temporally disordered directed percolation in which
the probability of spreading from a vertex , where is the time and
is the spatial coordinate, is independent of but depends on . Using
a very efficient algorithm we calculate low-density series for bond percolation
on the directed square lattice. Analysis of the series yields estimates for the
critical point and various critical exponents which are consistent with a
continuous change of the critical parameters as the strength of the disorder is
increased.Comment: 11 pages, 3 figure
Self-adjustment mechanisms and their application for orthosis design
Medical orthoses aim at guiding anatomical joints along their natural trajectories while preventing pathological movements, especially in case of trauma or injuries. The motions that take place between bone surfaces have complex kinematics. These so-called arthrokinematic motions exhibit axes that move both in translation and rotation. Traditionally, orthoses are carefully adjusted and positioned such that their kinematics approximate the arthrokinematic movements as closely as possible in order to protect the joint. Adjustment procedures are typically long and tedious. We suggest in this paper another approach. We propose mechanisms having intrinsic self-aligning properties. They are designed such that their main axis self-adjusts with respect to the joint’s physiological axis during motion. When connected to a limb, their movement becomes homokinetic and they have the property of automatically minimizing internal stresses. The study is performed here in the planar case focusing on the most important component of the arthrokinematic motions of a knee joint
GLOBAL STABILITY AND BIFURCATIONS ANALYSIS OF AN EPIDEMIC MODEL WITH CONSTANT REMOVAL RATE OF THE INFECTIVE
In this thesis we consider an epidemic model with a constant removal rate of infective individuals is proposed to understand the effect of limited resources for treatment of infective on the disease spread. It is found that it is unnecessary to take such a large treatment capacity that endemic equilibria disappear to eradicate the disease. It is shown that the outcome of disease spread may depend on the position of the initial states for certain range of parameters. It is also shown that the model undergoes a sequence of bifurcations including saddle-node bifurcation, subcritical Hopf bifurcation. Keyword: Epidemic model, nonlinear incidence rate, basic reproduction number, local and global stabilit
Ultramafic vegetation and soils in the circumboreal region of the Northern Hemisphere
The paper summarizes literature on climate, soil chemistry, vegetation and metal accumulation by plants found on ultramafic substrata in the circumboreal zone (sensu Takhtajan, Floristic regions of the world, 1986) of the Northern Hemisphere. We present a list of 50 endemic species and 18 ecotypes obligate to ultramafic soils from the circumboreal region of Holarctic, as well as 30 and 2 species of Ni and Zn hyperaccumulators, respectively. The number of both endemics and hyperaccumulators are markedly lower compared to that of the Mediterranean and tropical regions. The diversity of plant communities on ultramafics soils of the circumboral region is also described. The underlying causes for the differences of ultramafic flora between arctic, cold, cool temperate and Mediterranean and tropical regions are also discussed. © 2018, The Ecological Society of Japan
Recommended from our members
Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo.
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
Computer aided die design of straight flanging using approximate numerical analysis
Prediction of springback and minimum bending radius without failure are the main issues in die design for straight flanging process. The previously developed analytical and numerical models for sheet bending were observed to be inaccurate for straight flanging with relatively small bending radii. Finite element analysis with 2D models can be used to predict springback, bendability and tool loads accurately, but the analysis can take several hours, and pre- and post-processing are even more time consuming. Alternatively, in this paper, this problem is solved using advanced bending theory, implementing the geometric details of the straight flanging process to a mathematical model and computerized numerical analysis. The proposed method predicts springback and tool loads, particularly the minimum pad force necessary to prevent pad lift by dividing the deformation zone into three segments as pure elastic deflection without contact, elastic-plastic bending without contact and elastic-plastic bending in full contact with the die shoulder. The shift in neutral radius is modeled using an iterative procedure and taking the tool pressure and local thinning into account. The results are compared with limited experimental data as well as finite element simulations. (C) 2003 Elsevier B.V. All rights reserved
Simulation of roll forming process with the 3-D FEM code PAM-STAMP
Roll forming is a well known process used to manufacture long sheet metal products with constant cross section. Despite the long history of the process, the design procedure for the roll formed products, forming rolls, and roll pass sequences still remains more an art than a science. Thus, to avoid forming defects and to reduce the process development efforts, finite element analysis can be used to predict strain distributions and sheet geometry during and after the process. This paper summarizes the results of roll forming simulations made with a commercial FEM code. Deformed geometry and strain distributions predicted by simulations are compared with the results from previously conducted experiments. This study provided considerable experience how and when it is best to apply a commercial 3-D FEM code to the design of a roll forming process
