2,033 research outputs found
Spinal and Supraspinal Motor Control Predictors of Rate of Torque Development
During explosive movements and potentially injurious situations, the ability to rapidly generate torque is critical. Previous research has suggested that different phases of rate of torque development (RTD) are differentiately controlled. However, the extent to which supraspinal and spinal mechanisms predict RTD at different time intervals is unknown. RTD of the plantarflexors across various phases of contraction (i.e., 0–25, 0–50, 0–100, 0–150, 0–200, and 0–250 ms) was measured in 37 participants. The following predictor variables were also measured: (a) gain of the resting soleus H-reflex recruitment curve; (b) gain of the resting homonymous post-activation depression recruitment curve; (c) gain of the GABAergic presynaptic inhibition recruitment curve; (d) the level of postsynaptic recurrent inhibition at rest; (e) level of supraspinal drive assessed by measuring V waves; and (f) the gain of the resting soleus M wave. Stepwise regression analyses were used to determine which variables significantly predicted allometrically scaled RTD. The analyses indicated that supraspinal drive was the dominant predictor of RTD across all phases. Additionally, recurrent inhibition predicted RTD in all of the time intervals except 0–150 ms. These results demonstrate the importance of supraspinal drive and recurrent inhibition to RTD
Fat Fisher Zeroes
We show that it is possible to determine the locus of Fisher zeroes in the
thermodynamic limit for the Ising model on planar (``fat'') phi4 random graphs
and their dual quadrangulations by matching up the real part of the high and
low temperature branches of the expression for the free energy. The form of
this expression for the free energy also means that series expansion results
for the zeroes may be obtained with rather less effort than might appear
necessary at first sight by simply reverting the series expansion of a function
g(z) which appears in the solution and taking a logarithm.
Unlike regular 2D lattices where numerous unphysical critical points exist
with non-standard exponents, the Ising model on planar phi4 graphs displays
only the physical transition at c = exp (- 2 beta) = 1/4 and a mirror
transition at c=-1/4 both with KPZ/DDK exponents (alpha = -1, beta = 1/2, gamma
= 2). The relation between the phi4 locus and that of the dual quadrangulations
is akin to that between the (regular) triangular and honeycomb lattices since
there is no self-duality.Comment: 12 pages + 6 eps figure
Hip External Rotator Strength Is Associated With Better Dynamic Control of the Lower Extremity During Landing Tasks
Hip external rotator strength is associated with better dynamic control of the lower extremity during landing tasks. J Strength Cond Res 30(1): 282–291, 2016—The purpose of this study was to determine the association between hip strength and lower extremity kinematics and kinetics during unanticipated single-leg landing and cutting tasks in collegiate female soccer players. Twenty-three National Collegiate Athletic Association division I female soccer players were recruited for strength testing and biomechanical analysis. Maximal isometric hip abduction and external rotation strength were measured using a hand-held dynamometer and expressed as muscle torque (force × femoral length) and normalized to body weight. Three-dimensional lower extremity kinematics and kinetics were assessed with motion analysis and force plates, and an inverse dynamics approach was used to calculate net internal joint moments that were normalized to body weight. Greater hip external rotator strength was significantly associated with greater peak hip external rotation moments (r = 0.47; p = 0.021), greater peak knee internal rotation moments (r = 0.41; p = 0.048), greater hip frontal plane excursion (r = 0.49; p = 0.017), and less knee transverse plane excursion (r = -0.56; p = 0.004) during unanticipated single-leg landing and cutting tasks. In addition, a statistical trend was detected between hip external rotator strength and peak hip frontal plane moments (r = 0.39; p = 0.06). The results suggest that females with greater hip external rotator strength demonstrate better dynamic control of the lower extremity during unanticipated single-leg landing and cutting tasks and provide further support for the link between hip strength and lower extremity landing mechanics
Anticipatory Effects on Lower Extremity Neuromechanics During a Cutting Task
Context: Continued research into the mechanism of noncontact anterior cruciate ligament injury helps to improve clinical interventions and injury-prevention strategies. A better understanding of the effects of anticipation on landing neuromechanics may benefit training interventions.
Objective: To determine the effects of anticipation on lower extremity neuromechanics during a single-legged land-and-cut task.
Design: Controlled laboratory study.
Setting: University biomechanics laboratory.
Participants: Eighteen female National Collegiate Athletic Association Division I collegiate soccer players (age = 19.7 ± 0.8 years, height = 167.3 ± 6.0 cm, mass = 66.1 ± 2.1 kg).
Intervention(s): Participants performed a single-legged land-and-cut task under anticipated and unanticipated conditions.
Main Outcome Measure(s): Three-dimensional initial contact angles, peak joint angles, and peak internal joint moments and peak vertical ground reaction forces and sagittal-plane energy absorption of the 3 lower extremity joints; muscle activation of selected hip- and knee-joint muscles.
Results: Unanticipated cuts resulted in less knee flexion at initial contact and greater ankle toe-in displacement. Unanticipated cuts were also characterized by greater internal hip-abductor and external-rotator moments and smaller internal knee-extensor and external-rotator moments. Muscle-activation profiles during unanticipated cuts were associated with greater activation of the gluteus maximus during the precontact and landing phases.
Conclusions: Performing a cutting task under unanticipated conditions changed lower extremity neuromechanics compared with anticipated conditions. Most of the observed changes in lower extremity neuromechanics indicated the adoption of a hip-focused strategy during the unanticipated condition
Modeling pN2 through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures
Nitrogen is a major nutrient for all life on Earth and could plausibly play a
similar role in extraterrestrial biospheres. The major reservoir of nitrogen at
Earth's surface is atmospheric N2, but recent studies have proposed that the
size of this reservoir may have fluctuated significantly over the course of
Earth's history with particularly low levels in the Neoarchean - presumably as
a result of biological activity. We used a biogeochemical box model to test
which conditions are necessary to cause large swings in atmospheric N2
pressure. Parameters for our model are constrained by observations of modern
Earth and reconstructions of biomass burial and oxidative weathering in deep
time. A 1-D climate model was used to model potential effects on atmospheric
climate. In a second set of tests, we perturbed our box model to investigate
which parameters have the greatest impact on the evolution of atmospheric pN2
and consider possible implications for nitrogen cycling on other planets. Our
results suggest that (a) a high rate of biomass burial would have been needed
in the Archean to draw down atmospheric pN2 to less than half modern levels,
(b) the resulting effect on temperature could probably have been compensated by
increasing solar luminosity and a mild increase in pCO2, and (c) atmospheric
oxygenation could have initiated a stepwise pN2 rebound through oxidative
weathering. In general, life appears to be necessary for significant
atmospheric pN2 swings on Earth-like planets. Our results further support the
idea that an exoplanetary atmosphere rich in both N2 and O2 is a signature of
an oxygen-producing biosphere.Comment: 33 pages, 11 figures, 2 tables (includes appendix), published in
Astrobiolog
The Association of Dorsiflexion Flexibility on Knee Kinematics and Kinetics during a Drop Vertical Jump in Healthy Female Athletes
Purpose
While previous studies have examined the association between ankle dorsiflexion flexibility and deleterious landing postures, it is not currently known how landing kinetics are influenced by ankle dorsiflexion flexibility. The purpose of this study was to examine whether ankle dorsiflexion flexibility was associated with landing kinematics and kinetics that have been shown to increase the risk of anterior cruciate ligament (ACL) injury in female athletes.
Methods
Twenty-three female collegiate soccer players participated in a preseason screening that included the assessment of ankle dorsiflexion flexibility and lower-body kinematics and kinetics during a drop vertical jump task.
Results
The results demonstrated that females with less ankle dorsiflexion flexibility exhibited greater peak knee abduction moments (r = −.442), greater peak knee abduction angles (r = .355), and less peak knee flexion angles (r = .385) during landing. The range of dorsiflexion flexibility for the current study was between 9° and 23° (mean = 15.0°; SD 3.9°).
Conclusion
Dorsiflexion flexibility may serve as a useful clinical measure to predict poor landing postures and external forces that have been associated with increased knee injury risk. Rehabilitation specialists can provide interventions aimed at improving dorsiflexion flexibility in order to ameliorate the impact of this modifiable factor on deleterious landing kinematics and kinetics in female athletes
Three-Dimensionally Confined Optical Modes in Quantum Well Microtube Ring Resonators
We report on microtube ring resonators with quantum wells embedded as an
optically active material. Optical modes are observed over a broad energy
range. Their properties strongly depend on the exact geometry of the microtube
along its axis. In particular we observe (i) preferential emission of light on
the inside edge of the microtube and (ii) confinement of light also in
direction of the tube axis by an axially varying geometry which is explained in
an expanded waveguide model.Comment: 5 pages, 4 figure
Mine Safety Detection System (MSDS)
Systems Engineering Project ReportThe search, detection, identification and assessment components of the U.S. Navys organic modular in-stride Mine Countermeasure (MCM) Concept of Operations (CONOPS) have been evaluated for their effectiveness as part of a hypothetical exercise in response to the existence of sea mines placed in the sea lanes of the Strait of Hormuz. The current MCM CONOPS has been shown to be capable of supporting the mine search and detection effort component allocation needs by utilizing two Airborne Mine Countermeasure (AMCM) deployed systems. This adequacy assessment is tenuous. The CONOPS relies heavily upon the Sikorsky MH- 60/S as the sole platform from which the systems operate. This reliance is further compounded by the fact both AMCM systems are not simultaneously compatible on board the MH-60/S. As such, resource availability will challenge the MCM CONOPS as well as the other missions for which the MH-60/S is intended. Additionally, the AMCM CONOPS systems are dependent upon the presence of warfighters in the helicopters above the minefield and as integral participants in the efforts to identify sea mines and to assess their threat level. Model Based System Engineering (MBSE) techniques have been combined with research and stakeholder inputs in an analysis that supports these assertions.mhttp://archive.org/details/minesafetydetect1094517457Approved for public release; distribution is unlimited
Time-Resolved Studies of a Rolled-Up Semiconductor Microtube Laser
We report on lasing in rolled-up microtube resonators. Time-resolved studies
on these semiconductor lasers containing GaAs quantum wells as optical gain
material reveal particularly fast turn-on-times and short pulse emissions above
the threshold. We observe a strong red-shift of the laser mode during the pulse
emission which is compared to the time evolution of the charge-carrier density
calculated by rate equations
- …
