16 research outputs found
Entangled Mechanical Oscillators
Hallmarks of quantum mechanics include superposition and entanglement. In the
context of large complex systems, these features should lead to situations like
Schrodinger's cat, which exists in a superposition of alive and dead states
entangled with a radioactive nucleus. Such situations are not observed in
nature. This may simply be due to our inability to sufficiently isolate the
system of interest from the surrounding environment -- a technical limitation.
Another possibility is some as-of-yet undiscovered mechanism that prevents the
formation of macroscopic entangled states. Such a limitation might depend on
the number of elementary constituents in the system or on the types of degrees
of freedom that are entangled. One system ubiquitous to nature where
entanglement has not been previously demonstrated is distinct mechanical
oscillators. Here we demonstrate deterministic entanglement of separated
mechanical oscillators, consisting of the vibrational states of two pairs of
atomic ions held in different locations. We also demonstrate entanglement of
the internal states of an atomic ion with a distant mechanical oscillator.Comment: 7 pages, 2 figure
Room temperature continuous–wave green lasing from an InGaN microdisk on silicon
Optically pumped green lasing with an ultra low threshold has been achieved using an InGaN/GaN based micro-disk with an undercut structure on silicon substrates. The micro-disks with a diameter of around 1 μm were fabricated by means of a combination of a cost-effective silica micro-sphere approach, dry-etching and subsequent chemical etching. The combination of these techniques both minimises the roughness of the sidewalls of the micro-disks and also produces excellent circular geometry. Utilizing this fabrication process, lasing has been achieved at room temperature under optical pumping from a continuous-wave laser diode. The threshold for lasing is as low as 1 kW/cm2. Time–resolved micro photoluminescence (PL) and confocal PL measurements have been performed in order to further confirm the lasing action in whispering gallery modes and also investigate the excitonic recombination dynamics of the lasing
One- and two-dimensional photonic crystal micro-cavities in single crystal diamond
The development of solid-state photonic quantum technologies is of great
interest for fundamental studies of light-matter interactions and quantum
information science. Diamond has turned out to be an attractive material for
integrated quantum information processing due to the extraordinary properties
of its colour centres enabling e.g. bright single photon emission and spin
quantum bits. To control emitted photons and to interconnect distant quantum
bits, micro-cavities directly fabricated in the diamond material are desired.
However, the production of photonic devices in high-quality diamond has been a
challenge so far. Here we present a method to fabricate one- and
two-dimensional photonic crystal micro-cavities in single-crystal diamond,
yielding quality factors up to 700. Using a post-processing etching technique,
we tune the cavity modes into resonance with the zero phonon line of an
ensemble of silicon-vacancy centres and measure an intensity enhancement by a
factor of 2.8. The controlled coupling to small mode volume photonic crystal
cavities paves the way to larger scale photonic quantum devices based on
single-crystal diamond
