17,703 research outputs found

    Transmission loss predictions for dissipative silencers of arbitrary cross section in the presence of mean flow

    Get PDF
    A numerical technique is developed for the analysis of dissipative silencers of arbitrary, but axially uniform, cross section. Mean gas flow is included in a central airway which is separated from a bulk reacting porous material by a concentric perforate screen. The analysis begins by employing the finite element method to extract the eigenvalues and associated eigenvectors for a silencer of infinite length. Point collocation is then used to match the expanded acoustic pressure and velocity fields in the silencer chamber to those in the inlet and outlet pipes. Transmission loss predictions are compared with experimental measurements taken for two automotive dissipative silencers with elliptical cross sections. Good agreement between prediction and experiment is observed both without mean flow and for a mean flow Mach number of 0.15. It is demonstrated also that the technique presented offers a considerable reduction in computational expenditure when compared to a three dimensional finite element analysis

    Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe

    Get PDF
    An analytic mode matching scheme that includes higher order modes is developed for a straight-through circular dissipative silencer. Uniform mean flow is added to the central airway and a concentric perforated screen separates the mean flow from a bulk reacting porous material. Transmission loss predictions are compared with experimental measurements and good agreement is demonstrated for three different silencers. Furthermore, it is demonstrated that, when mean flow is present, the axial kinematic matching condition should equate to that chosen for the radial kinematic boundary condition over the interface between the airway and the material. Accordingly, if the radial matching conditions are continuity of pressure and displacement, then the axial matching conditions should also be continuity of pressure and displacement, rather than pressure and velocity as previously thought. When a perforated screen is present the radial pressure condition changes, but the radial kinematic condition should always remain equivalent to that chosen for the axial kinematic matching condition; here, results indicate that continuity of displacement should be retained when a perforated screen is present

    A comparative evaluation of the effect of internet-based CME delivery format on satisfaction, knowledge and confidence

    Get PDF
    Background: Internet-based instruction in continuing medical education (CME) has been associated with favorable outcomes. However, more direct comparative studies of different Internet-based interventions, instructional methods, presentation formats, and approaches to implementation are needed. The purpose of this study was to conduct a comparative evaluation of two Internet-based CME delivery formats and the effect on satisfaction, knowledge and confidence outcomes. Methods: Evaluative outcomes of two differing formats of an Internet-based CME course with identical subject matter were compared. A Scheduled Group Learning format involved case-based asynchronous discussions with peers and a facilitator over a scheduled 3-week delivery period. An eCME On Demand format did not include facilitated discussion and was not based on a schedule; participants could start and finish at any time. A retrospective, pre-post evaluation study design comparing identical satisfaction, knowledge and confidence outcome measures was conducted. Results: Participants in the Scheduled Group Learning format reported significantly higher mean satisfaction ratings in some areas, performed significantly higher on a post-knowledge assessment and reported significantly higher post-confidence scores than participants in the eCME On Demand format that was not scheduled and did not include facilitated discussion activity. Conclusions: The findings support the instructional benefits of a scheduled delivery format and facilitated asynchronous discussion in Internet-based CME

    Quantifying the performance of a top-down natural ventilation Windcatcher™

    Get PDF
    Estimating the performance of a natural ventilation system is very important if one is to correctly size the system for a particular application. Estimating the performance of a Windcatcher™ is complicated by the complex flow patterns that occur during the top-down ventilation process. Methods for predicting Windcatcher™ performance can currently be separated into simplistic analytic methods such as the envelope flow model and the use of complex and time consuming numerical methods such as CFD. This article presents an alternative semi-empirical approach in which a detailed analytic model makes use of experimental data in the literature in order to provide a fast but accurate estimate of Windcatcher™ performance. Included in the model are buoyancy effects, the effect of changes in wind speed and direction, as well as the treatment of sealed and unsealed rooms. The semi-empirical predictions obtained are shown to compare well with measured data and air buoyancy is shown only to be significant at relatively low flow velocities. In addition, a very simple algorithm is proposed for quantifying the air flow rates from a room induced by a Windcatcher™ in the absence of buoyancy effects

    Experimental methodologies to support aircraft icing analysis

    Get PDF
    The experimental methodologies are illustrated by graphs, charts and line drawings. Typical ultrasonic echo signals for dry and wet ice growth, ice accretion rates for various tunnel configurations, the experimental configuration for flight tests of the ultrasonic measuring system and heat balance models used to predict ice growth are among the topics that are illustrated and briefly discussed

    Experimental measurements of heat transfer from an iced surface during artificial and natural cloud icing conditions

    Get PDF
    The heat transfer behavior of accreting ice surfaces in natural (flight test) and simulated (wind tunnel) cloud icing conditions were studied. Observations of wet and dry ice growth regimes as measured by ultrasonic pulse echo techniques were made. Observed wet and dry ice growth regimes at the stagnation point of a cylinder were compared with those predicted using a quasi steady state heat balance model. A series of heat transfer coefficients were employed by the model to infer the local heat transfer behavior of the actual ice surfaces. The heat transfer in the stagnation region was generally inferred to be higher in wind tunnel icing tests than in natural flight icing conditions

    Visual information transfer. 1: Assessment of specific information needs. 2: The effects of degraded motion feedback. 3: Parameters of appropriate instrument scanning behavior

    Get PDF
    Pilot and flight crew assessment of visually displayed information is examined as well as the effects of degraded and uncorrected motion feedback, and instrument scanning efficiency by the pilot. Computerized flight simulation and appropriate physiological measurements are used to collect data for standardization

    Visual information transfer. Part 1: Assessment of specific information needs. Part 2: Parameters of appropriate instrument scanning behavior

    Get PDF
    The present study explored eye scan behavior as a function of level of subject training. Oculometric (eye scan) measures were recorded from each of ten subjects during training trials on a CRT based flight simulation task. The task developed for the study incorporated subtasks representative of specific activities performed by pilots, but which could be performed at asymptotic levels within relatively short periods of training. Changes in eye scan behavior were examined as initially untrained subjects developed skill in the task. Eye scan predictors of performance on the task were found. Examination of eye scan in proximity to selected task events revealed differences in the distribution of looks at the instruments as a function of level of training
    corecore