42 research outputs found

    Practice Induces Function-Specific Changes in Brain Activity

    Get PDF
    Practice can have a profound effect on performance and brain activity, especially if a task can be automated. Tasks that allow for automatization typically involve repeated encoding of information that is paired with a constant response. Much remains unknown about the effects of practice on encoding and response selection in an automated task.To investigate function-specific effects of automatization we employed a variant of a Sternberg task with optimized separation of activity associated with encoding and response selection by means of m-sequences. This optimized randomized event-related design allows for model free measurement of BOLD signals over the course of practice. Brain activity was measured at six consecutive runs of practice and compared to brain activity in a novel task.Prompt reductions were found in the entire cortical network involved in encoding after a single run of practice. Changes in the network associated with response selection were less robust and were present only after the third run of practice.This study shows that automatization causes heterogeneous decreases in brain activity across functional regions that do not strictly track performance improvement. This suggests that cognitive performance is supported by a dynamic allocation of multiple resources in a distributed network. Our findings may bear importance in understanding the role of automatization in complex cognitive performance, as increased encoding efficiency in early stages of practice possibly increases the capacity to otherwise interfering information

    Neural Correlates of Visual Motion Prediction

    Get PDF
    Predicting the trajectories of moving objects in our surroundings is important for many life scenarios, such as driving, walking, reaching, hunting and combat. We determined human subjects’ performance and task-related brain activity in a motion trajectory prediction task. The task required spatial and motion working memory as well as the ability to extrapolate motion information in time to predict future object locations. We showed that the neural circuits associated with motion prediction included frontal, parietal and insular cortex, as well as the thalamus and the visual cortex. Interestingly, deactivation of many of these regions seemed to be more closely related to task performance. The differential activity during motion prediction vs. direct observation was also correlated with task performance. The neural networks involved in our visual motion prediction task are significantly different from those that underlie visual motion memory and imagery. Our results set the stage for the examination of the effects of deficiencies in these networks, such as those caused by aging and mental disorders, on visual motion prediction and its consequences on mobility related daily activities

    Incidental Findings on Brain MR Imaging in Older Community-Dwelling Subjects Are Common but Serious Medical Consequences Are Rare:A Cohort Study

    Get PDF
    Incidental findings in neuroimaging occur in 3% of volunteers. Most data come from young subjects. Data on their occurrence in older subjects and their medical, lifestyle and financial consequences are lacking. We determined the prevalence and medical consequences of incidental findings found in community-dwelling older subjects on brain magnetic resonance imaging.Prospective cohort observational study.Single centre study with input from secondary care.Lothian Birth Cohort 1936, a study of cognitive ageing.Incidental findings identified by two consultant neuroradiologists on structural brain magnetic resonance imaging at age 73 years; resulting medical referrals and interventions.PREVALENCE OF INCIDENTAL FINDINGS BY INDIVIDUAL CATEGORIES: neoplasms, cysts, vascular lesions, developmental, ear, nose or throat anomalies, by intra- and extracranial location; visual rating of white matter hyperintensities and brain atrophy.There were 281 incidental findings in 223 (32%) of 700 subjects, including 14 intra- or extracranial neoplasms (2%), 15 intracranial vascular anomalies (2%), and 137 infarcts or haemorrhages (20%). Additionally, 153 had moderate/severe deep white matter hyperintensities (22%) and 176 had cerebral atrophy at, or above, the upper limit of normal (25%) compared with a normative population template. The incidental findings were unrelated to white matter hyperintensities or atrophy; about a third of subjects had both incidental findings and moderate or severe WMH and a quarter had incidental findings and atrophy. The incidental findings resulted in one urgent and nine non-urgent referrals for further medical assessment, but ultimately in no new treatments.In community-dwelling older subjects, incidental findings, including white matter hyperintensities and atrophy, were common. However, many findings were not of medical importance and, in this age group, most did not result in further assessment and none in change of treatment

    Sports participation with Chiari I malformation

    No full text
    corecore