155 research outputs found
Recommended from our members
Re‐evaluation of phosphoric acid–phosphates – di‐, tri‐ and polyphosphates (E 338–341, E 343, E 450–452) as food additives and the safety of proposed extension of use
The Panel on Food Additives and Flavourings added to Food (FAF) provided a scientific opinion re‐evaluating the safety of phosphates (E 338–341, E 343, E 450–452) as food additives. The Panel considered that adequate exposure and toxicity data were available. Phosphates are authorised food additives in the EU in accordance with Annex II and III to Regulation (EC) No 1333/2008. Exposure to phosphates from the whole diet was estimated using mainly analytical data. The values ranged from 251 mg P/person per day in infants to 1,625 mg P/person per day for adults, and the high exposure (95th percentile) from 331 mg P/person per day in infants to 2,728 mg P/person per day for adults. Phosphate is essential for all living organisms, is absorbed at 80–90% as free orthophosphate excreted via the kidney. The Panel considered phosphates to be of low acute oral toxicity and there is no concern with respect to genotoxicity and carcinogenicity. No effects were reported in developmental toxicity studies. The Panel derived a group acceptable daily intake (ADI) for phosphates expressed as phosphorus of 40 mg/kg body weight (bw) per day and concluded that this ADI is protective for the human population. The Panel noted that in the estimated exposure scenario based on analytical data exposure estimates exceeded the proposed ADI for infants, toddlers and other children at the mean level, and for infants, toddlers, children and adolescents at the 95th percentile. The Panel also noted that phosphates exposure by food supplements exceeds the proposed ADI. The Panel concluded that the available data did not give rise to safety concerns in infants below 16 weeks of age consuming formula and food for medical purposes
Total aortic arch replacement under intermittent pressure-augmented retrograde cerebral perfusion
Kitahori, Kawata, Takamoto et al. described the effectiveness of a novel protocol for retrograde cerebral perfusion that included intermittent pressure augmentation for brain protection in a canine model. Based on their report, we applied this novel technique clinically. Although the duration of circulatory arrest with retrograde cerebral perfusion was long, the patient recovered consciousness soon after the operation and had no neurological deficit. Near-infrared oximetry showed recovery of intracranial blood oxygen saturation every time the pressure was augmented
Two Birds with One Stone? Possible Dual-Targeting H1N1 Inhibitors from Traditional Chinese Medicine
The H1N1 influenza pandemic of 2009 has claimed over 18,000 lives. During this pandemic, development of drug resistance further complicated efforts to control and treat the widespread illness. This research utilizes traditional Chinese medicine Database@Taiwan (TCM Database@Taiwan) to screen for compounds that simultaneously target H1 and N1 to overcome current difficulties with virus mutations. The top three candidates were de novo derivatives of xylopine and rosmaricine. Bioactivity of the de novo derivatives against N1 were validated by multiple machine learning prediction models. Ability of the de novo compounds to maintain CoMFA/CoMSIA contour and form key interactions implied bioactivity within H1 as well. Addition of a pyridinium fragment was critical to form stable interactions in H1 and N1 as supported by molecular dynamics (MD) simulation. Results from MD, hydrophobic interactions, and torsion angles are consistent and support the findings of docking. Multiple anchors and lack of binding to residues prone to mutation suggest that the TCM de novo derivatives may be resistant to drug resistance and are advantageous over conventional H1N1 treatments such as oseltamivir. These results suggest that the TCM de novo derivatives may be suitable candidates of dual-targeting drugs for influenza.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University and Asia University (CMU98-TCM)China Medical University and Asia University (CMU99-TCM)China Medical University and Asia University (CMU99-S-02)China Medical University and Asia University (CMU99-ASIA-25)China Medical University and Asia University (CMU99-ASIA-26)China Medical University and Asia University (CMU99-ASIA-27)China Medical University and Asia University (CMU99-ASIA-28)Taiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005
TAC1b mutation in Candida auris decreases manogepix susceptibility owing to increased CDR1 expression
Candida auris is an emerging pathogenic fungus that is highly resistant to existing antifungal drugs. Manogepix is a novel antifungal agent that exerts antifungal activity by inhibiting glycosylphosphatidylinositol anchor biosynthesis. Although the mechanisms of resistance of Candida species to manogepix have been reported previously, those of C. auris are yet to be studied. To investigate the resistance mechanisms of C. auris, we exposed a clinical isolate (clade I) to manogepix in vitro and generated strains with reduced susceptibility to manogepix. A search for gain-of-function mutations that upregulate efflux pump expression confirmed the presence of the D865N amino acid mutation in TAC1b. We used the clustered regularly interspaced short palindromic repeats-Cas9 system to create a recovery strain (N865D) in which only this single nucleotide mutation was returned to the wild-type sequence. We generated a mutant strain by introducing only the D865N mutation into the parent strain and a different clade strain (clade III). The D865N mutant strains were clearly less susceptible to manogepix than the parental strains and exhibited high CDR1 expression. Moreover, we generated a strain deficient in CDR1 and confirmed that this strain had significantly increased susceptibility to manogepix. Thus, the present study demonstrated that the TAC1b mutation in C. auris upregulates CDR1 expression and decreases its susceptibility to manogepix.Antimicrobial Agents and Chemotherapy, 69(2), art. no. e01508-24; 2025journal articl
TAC1b mutation in Candida auris decreases manogepix susceptibility owing to increased CDR1 expression
Candida auris is an emerging pathogenic fungus that is highly resistant to existing antifungal drugs. Manogepix is a novel antifungal agent that exerts antifungal activity by inhibiting glycosylphosphatidylinositol anchor biosynthesis. Although the mechanisms of resistance of Candida species to manogepix have been reported previously, those of C. auris are yet to be studied. To investigate the resistance mechanisms of C. auris, we exposed a clinical isolate (clade I) to manogepix in vitro and generated strains with reduced susceptibility to manogepix. A search for gain-of-function mutations that upregulate efflux pump expression confirmed the presence of the D865N amino acid mutation in TAC1b. We used the clustered regularly interspaced short palindromic repeats-Cas9 system to create a recovery strain (N865D) in which only this single nucleotide mutation was returned to the wild-type sequence. We generated a mutant strain by introducing only the D865N mutation into the parent strain and a different clade strain (clade III). The D865N mutant strains were clearly less susceptible to manogepix than the parental strains and exhibited high CDR1 expression. Moreover, we generated a strain deficient in CDR1 and confirmed that this strain had significantly increased susceptibility to manogepix. Thus, the present study demonstrated that the TAC1b mutation in C. auris upregulates CDR1 expression and decreases its susceptibility to manogepix
Developing Lessons for ESD based on the Collaborated Teaching by an Attached School Teacher and University Teacher (1)
departmental bulletin pape
Developing Lessons for ESD based on the Collaborated Teaching by an Attached School Teacher and University Teacher (2)
departmental bulletin pape
Right ventricular adaptation and failure in pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) is an obstructive pulmonary vasculopathy, characterized by excess proliferation, apoptosis resistance, inflammation, fibrosis, and vasoconstriction. Although PAH therapies target some of these vascular abnormalities (primarily vasoconstriction), most do not directly benefit the right ventricle (RV). This is suboptimal because a patient's functional state and prognosis are largely determined by the success of the adaptation of the RV to the increased afterload. The RV initially hypertrophies but might ultimately decompensate, becoming dilated, hypokinetic, and fibrotic. A number of pathophysiologic abnormalities have been identified in the PAH RV, including: ischemia and hibernation (partially reflecting RV capillary rarefaction), autonomic activation (due to G protein receptor kinase 2-mediated downregulation and desensitization of β-adrenergic receptors), mitochondrial-metabolic abnormalities (notably increased uncoupled glycolysis and glutaminolysis), and fibrosis. Many RV abnormalities are detectable using molecular imaging and might serve as biomarkers. Some molecular pathways, such as those regulating angiogenesis, metabolism, and mitochondrial dynamics, are similarly deranged in the RV and pulmonary vasculature, offering the possibility of therapies that treat the RV and pulmonary circulation. An important paradigm in PAH is that the RV and pulmonary circulation constitute a unified cardiopulmonary unit. Clinical trials of PAH pharmacotherapies should assess both components of the cardiopulmonary unit
Xenopericardial roll graft replacement for infectious pseudoaneurysms and graft infections of the aorta
- …
