344 research outputs found
Tricellular Tight Junctions in the Inner Ear
Tight junctions (TJs) are structures that seal the space between the epithelial cell sheets. In the inner ear, the barrier function of TJs is indispensable for the separation of the endolymphatic and perilymphatic spaces, which is essential for the generation and maintenance of the endocochlear potential (EP). TJs are formed by the intercellular binding of membrane proteins, known as claudins, and mutations in these proteins cause deafness in humans and mice. Within the epithelial cell sheet, however, a bound structure is present at the site where the corners of three cells meet (tricellular tight junctions (tTJs)), and the maintenance of the barrier function at this location cannot be explained by the claudins alone. Tricellulin and the angulin family of proteins (angulin-1/LSR, angulin-2/ILDR1, and angulin-3/ILDR2) have been identified as tTJ-associated proteins. Tricellulin and ILDR1 are localized at the tTJ and alterations in these proteins have been reported to be involved in deafness. In this review, we will present the current state of knowledge for tTJs
Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells
Occludin is the first identified protein in the tight junction (TJ), but its function has remained for the most part obscure. TJs have been demonstrated to play important roles in the inner ear function, and occludin is expressed in all the epithelial TJs in the inner ear. Thus, we examined the inner ears of occludin-deficient (Occ(-/-)) mice. Although inner ears initially developed normally in Occ(-/-) mice, apoptosis occurs in hair cells in the organ of Corti around day 12 after birth, and deafness develops. Since hair cell degeneration was not observed in cochlear explant cultures of Occ(-/-) mice, environmental changes were considered to be the trigger of cell death. As for the vestibular system, both the morphologies and functions are normal in Occ(-/-) mice. These phenotypes of Occ(-/-) mice are very similar with those of claudin-14 or claudin-9 deficient mice, leading us to speculate on the existence of imbalance induced by TJ abnormalities, such as localized ionic components. Moreover, the occludin deficiency led to dislocalization of tricellulin, a gene responsible for human deafness DFNB49. The deafness in Occ(-/-) mice may be due to this dislocalization of tricellulin.ArticleBIOLOGY OPEN.3(8):759-766(2014)journal articl
Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth.
International audienceThe precise architecture of hair bundles, the arrays of mechanosensitive microvilli-like stereocilia crowning the auditory hair cells, is essential to hearing. Myosin IIIa, defective in the late-onset deafness form DFNB30, has been proposed to transport espin-1 to the tips of stereocilia, thereby promoting their elongation. We show that Myo3a(-/-)Myo3b(-/-) mice lacking myosin IIIa and myosin IIIb are profoundly deaf, whereas Myo3a-cKO Myo3b(-/-) mice lacking myosin IIIb and losing myosin IIIa postnatally have normal hearing. Myo3a(-/-)Myo3b(-/-) cochlear hair bundles display robust mechanoelectrical transduction currents with normal kinetics but show severe embryonic abnormalities whose features rapidly change. These include abnormally tall and numerous microvilli or stereocilia, ungraded stereocilia bundles, and bundle rounding and closure. Surprisingly, espin-1 is properly targeted to Myo3a(-/-)Myo3b(-/-) stereocilia tips. Our results uncover the critical role that class III myosins play redundantly in hair-bundle morphogenesis; they unexpectedly limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping
Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia
Ezrin/radixin/moesin (ERM) proteins cross-link actin filaments to plasma membranes to integrate the function of cortical layers, especially microvilli. We found that in cochlear and vestibular sensory hair cells of adult wild-type mice, radixin was specifically enriched in stereocilia, specially developed giant microvilli, and that radixin-deficient (Rdx−/−) adult mice exhibited deafness but no obvious vestibular dysfunction. Before the age of hearing onset (∼2 wk), in the cochlea and vestibule of Rdx−/− mice, stereocilia developed normally in which ezrin was concentrated. As these Rdx−/− mice grew, ezrin-based cochlear stereocilia progressively degenerated, causing deafness, whereas ezrin-based vestibular stereocilia were maintained normally in adult Rdx−/− mice. Thus, we concluded that radixin is indispensable for the hearing ability in mice through the maintenance of cochlear stereocilia, once developed. In Rdx−/− mice, ezrin appeared to compensate for radixin deficiency in terms of the development of cochlear stereocilia and the development/maintenance of vestibular stereocilia. These findings indicated the existence of complicate functional redundancy in situ among ERM proteins
Methanol stimulates the colony-formation rate in a human hepatoma cell line (HLE).
<P>Effects of methanol on colony-formation of human hepatoma cells were investigated. Among five human hepatoma cell lines (Hep G2, HLE, HuH-6, HuH-7, and PLC/PRF/5), only HLE cells showed enhanced colony formation due to methanol. The effective concentrations of methanol were around 1%. The enhancement occurred in a greater degree when the cells were seeded in the culture medium containing methanol than when methanol was added 24h after the cells were seeded. Methanol itself, however, did not enhance the cell proliferation.</p
Study on the Expression and Clinical Significances of Lewis y Antigen and Integrin αv, β3 in Epithelial Ovarian Tumors
Objective: To detect the expression and clinical significances of Lewis y antigen and integrin αv, β3 in epithelial ovarian tumors, and to explore the expression correlation between Lewis y antigen and integrin αv, β3. Methods: Immunohistochemical staining was performed in 95 cases of epithelial ovarian cancer, 37 cases of borderline tumors, 20 cases of benign tumors, and 20 cases of normal ovarian tissue, for the detection of Lewis y antigen and integrin αv, β3 expressions, and to analyze the relationship between Lewis y antigen and integrin, and the relationship between clinical and pathological parameters of ovarian cancer. In addition, immunofluorescence double labeling was utilized to detect the expression correlation between Lewis y antigen and integrin αv, β3 in ovarian cancer. Results: In epithelial ovarian tumors, the expression rate of Lewis y antigen was 81.05%, significantly higher than that of borderline (51.53%) (P < 0.05) and benign (25%) (P < 0.01) tumors, and normal ovarian tissues (0) (P < 0.01). The expression rate of integrin αv, β3 in malignant epithelial ovarian tumors was 78.95% and 82.11%, respectively, significantly higher than that of the borderline (45.94%, 40.54%) (both P < 0.05), benign group (10.00%, 15.00%) (both P < 0.01) and normal ovary group (5%, 15%) (both P < 0.01). Conclusions: Lewis y and integrins αv, β3 are relevant to pelvic and abdominal diffusion and metastasis of ovarian cancer cells, suggesting that these two molecules mediate a boosting function for tumor metastasis
Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome
Enlarged vestibular aqueduct (EVA) is one of the most commonly identified inner ear malformations in hearing loss patients including Pendred syndrome. While biallelic mutations of the SLC26A4 gene, encoding pendrin, causes non-syndromic hearing loss with EVA or Pendred syndrome, a considerable number of patients appear to carry mono-allelic mutation. This suggests faulty pendrin regulatory machinery results in hearing loss. Here we identify EPHA2 as another causative gene of Pendred syndrome with SLC26A4. EphA2 forms a protein complex with pendrin controlling pendrin localization, which is disrupted in some pathogenic forms of pendrin. Moreover, point mutations leading to amino acid substitution in the EPHA2 gene are identified from patients bearing mono-allelic mutation of SLC26A4. Ephrin-B2 binds to EphA2 triggering internalization with pendrin inducing EphA2 autophosphorylation weakly. The identified EphA2 mutants attenuate ephrin-B2- but not ephrin-A1-induced EphA2 internalization with pendrin. Our results uncover an unexpected role of the Eph/ephrin system in epithelial function
Toll-like Receptors 2 and 4 and Their Mutations in Patients with Otitis Media and Middle Ear Effusion
ObjectivesToll-like receptors (TLRs) detect microbial infections and they can directly induce innate host defense responses. TLR 2 has been shown to be primarily involved in the recognition of peptidoglycans and lipoteichoic acid of gram positive bacteria. TLR 4 recognizes lipopolysaccharides and lipoteichoic acids from both gram-negative and gram-positive bacteria. Both mutations lead a reduced capacity to elicit inflammation and they increase the risk for gram-positive and negative infections. This study was performed to investigate the expressions of TLR 2 and 4 and their mutations in patients suffering with otitis media and middle ear effusion.MethodsMiddle ear fluid samples were collected from 40 otitis media effusion (OME) patients who had ventilating tubesinserted. Bacteria in the effusion fluid were detected by standard bacterial culture. The secreted IgG, IgA and IgM were measured by Enzyme-linked immunosorbent assay. TLR 2 and 4 were assessed by performing RT-PCR. The genomic DNA from each patient was isolated from the middle ear fluid samples that were collected from 60 OME patients, and the presence of mutations was determined by performing restriction digestion and DNA sequencing analysis.ResultsAmong the 40 middle ear fluid samples, bacteria were detected in 13 middle ear fluid samples. The amounts of IgM, IgA, and IgG were 151.20±60.94 ng/mL, 21.59±7.96 ng/mL and 11.55±16.98 ng/mL, respectively. TLR 2 and 4 were expressed in the middle ear fluid and the expression of TLR 2 was higher than that of TLR 4. However, there was no correlation between the expressions of TLR 2 and 4, and the concentration of immunoglobulin or the presence of bacteria (P>0.05). There ware no mutations of TLR 2 (Arg753Gln, Arg677Trp) and TLR 4 (Asp299Gly, Thr399Ile).ConclusionTLR 2 and 4 were expressed in all the middle ear fluid samples of OME, but the mutations of TLR 2 and 4 were not detected. TLR 2 and 4 may play a vital role in the immunological responses of patients with OME
The 133-kDa N-Terminal Domain Enables Myosin 15 to Maintain Mechanotransducing Stereocilia and Is Essential for Hearing
The precise assembly of inner ear hair cell stereocilia into rows of increasing height is critical for mechanotransduction and the sense of hearing. Yet, how the lengths of actin-based stereocilia are regulated remains poorly understood. Mutations of the molecular motor myosin 15 stunt stereocilia growth and cause deafness. We found that hair cells express two isoforms of myosin 15 that differ by inclusion of an 133-kDa N-terminal domain, and that these isoforms can selectively traffic to different stereocilia rows. Using an isoform-specific knockout mouse, we show that hair cells expressing only the small isoform remarkably develop normal stereocilia bundles. However, a critical subset of stereocilia with active mechanotransducer channels subsequently retracts. The larger isoform with the 133-kDa N-terminal domain traffics to these specialized stereocilia and prevents disassembly of their actin core. Our results show that myosin 15 isoforms can navigate between functionally distinct classes of stereocilia, and are independently required to assemble and then maintain the intricate hair bundle architecture
Tara up-regulates E-cadherin transcription by binding to the Trio RhoGEF and inhibiting Rac signaling
In the absence of Tara, Trio binds to E-cadherin and increases activation of the E-cadherin transcriptional repressor Tbx3
- …
