16 research outputs found
Physical Stress, Not Biotic Interactions, Preclude an Invasive Grass from Establishing in Forb-Dominated Salt Marshes
Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive.We examined the roles of physical stress and plant interactions in mediating the establishment of the smooth cordgrass, Spartina alterniflora, in a variety of coastal habitats in northern China. Field transplant experiments showed that cordgrass can invade mudflats and low estuarine marshes with low salinity and frequent flooding, but cannot survive in salt marshes and high estuarine marshes with hypersaline soils and infrequent flooding. The dominant native plant Suaeda salsa had neither competitive nor facilitative effects on cordgrass. A common garden experiment revealed that cordgrass performed significantly better when flooded every other day than when flooded weekly. These results suggest that physical stress rather than plant interactions limits cordgrass invasions in northern China.We conclude that Spartina invasions are likely to be constrained to tidal flats and low estuarine marshes in the Yellow River Delta. Due to harsh physical conditions, salt marshes and high estuarine marshes are unlikely to be invaded. These findings have implications for understanding Spartina invasions in northern China and on other coasts with similar biotic and abiotic environments
Comparison of Biomass and Nutrient Dynamics Between an Invasive and a Native Species in a Mediterranean Saltmarsh
Effect of rosette size, clonality and spatial distribution on the reproduction of Vriesea carinata (Bromeliaceae) in the Atlantic Forest of Paraná, southern Brazil
High lifetime inbreeding depression counteracts the reproductive assurance benefit of selfing in a mass-flowering shrub
Short- and long-term vegetative propagation of two spartina species on a salt marsh in southern Brazil
Spartina alterniflora and Spartina densiflora are native salt marsh plants from the Atlantic coast; their habitats in Patos Lagoon estuary (southern Brazil) are characterized by a microtidal regime (<0.5 m) and, during El Niño events, high estuarine water levels and prolonged flooding due to elevated freshwater discharge from a 200,000-km2 watershed. During and between El Niño events, the vegetative propagation of these two Spartina species in the largest estuary of southern Brazil (Patos Lagoon) was evaluated by monitoring transplanted plants for 10 years (short-term study) and interpreting aerial photos of natural stands for 56 years (long-term study). During the short-term study, S. alterniflora quickly occupied mud flats (up to 208 cm year−1) by elongation of rhizomes, whereas S. densiflora showed a modest lateral spread (up to 13 cm year−1) and generated dense circular-shaped stands. However, moderate and strong El Niño events can promote excessive flooding and positive anomalies in the estuarine water level that reduce the lateral spread and competitive ability of S. densiflora. During the long-term study, natural stands of S. alterniflora and S. densiflora had steady lateral spread rates of 152 and 5.2 cm year−1, respectively, over mud flats. In the microtidal marshes of the southwest Atlantic, the continuous long-term lateral expansion of both Spartina species embodies periods of intense flooding stress (moderate and strong El Niños), when there is a decrease of vegetative propagation and less stressful low water periods of fast spread over mud flats (non-El Niño periods and weak intensity El Niños)
