169 research outputs found

    KIC011764567: An evolved object showing substantial flare-activity

    Full text link
    We intensively studied the flare activity on the stellar object KIC011764567. The star was thought to be solar type, with a temperature of Teff=(5640±200)T_{eff} = (5640 \pm 200)\,K, log(g)=(4.3±0.3)\log(g) = (4.3 \pm 0.3)\,dex and a rotational period of Prot 22 d (Brown et al. 2011). High resolution spectra turn the target to an evolved object with Teff = (5300 \pm 150) K, a metalicity of [m/H]=(0.5±0.2)[m/H] = (-0.5 \pm 0.2), a surface gravity of log(g)=(3.3±0.4)log(g) = (3.3 \pm 0.4)\,dex, and a projected rotational velocity of vsini=(22±1)kms1v sin i = (22 \pm 1)\,kms^{-1}. Within an observing time span of 4 years we detected 150 flares in Kepler data in an energy range of 1036103710^{36} - 10^{37} erg. From a dynamical Lomb-Scargle periodogram we have evidence for differential rotation as well as for stellar spot evolution and migration. Analysing the occurrence times of the flares we found hints for a periodic flare frequency cycle of 430460430 - 460 d, the significance increases with an increasing threshold of the flares equivalent duration. One explanation is a very short activity cycle of the star with that period. Another possibility, also proposed by others in similar cases, is that the larger flares may be triggered by external phenomena, such as magnetically interaction with an unseen companion. Our high resolution spectra show that KIC011764567 is not a short period binary star

    No variations in transit times for Qatar-1 b

    Full text link
    The transiting hot Jupiter planet Qatar-1 b was presented to exhibit variations in transit times that could be of perturbative nature. A hot Jupiter with a planetary companion on a nearby orbit would constitute an unprecedented planetary configuration, important for theories of formation and evolution of planetary systems. We performed a photometric follow-up campaign to confirm or refute transit timing variations. We extend the baseline of transit observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m telescopes. These photometric time series, together with data available in the literature, were analyzed in a homogenous way to derive reliable transit parameters and their uncertainties. We show that the dataset of transit times is consistent with a linear ephemeris leaving no hint for any periodic variations with a range of 1 min. We find no compelling evidence for the existence of a close-in planetary companion to Qatar-1 b. This finding is in line with a paradigm that hot Jupiters are not components of compact multi-planetary systems. Based on dynamical simulations, we place tighter constraints on a mass of any fictitious nearby planet in the system. Furthermore, new transit light curves allowed us to redetermine system parameters with the precision better than that reported in previous studies. Our values generally agree with previous determinations.Comment: Accepted for publication in A&

    Transit Timing Analysis in the HAT-P-32 System

    Full text link
    We present the results of 45 transit observations obtained for the transiting exoplanet HATP- 32b. The transits have been observed using several telescopes mainly throughout the YETI (Young Exoplanet Transit Initiative) network. In 25 cases, complete transit light curves with a timing precision better than 1.4 min have been obtained. These light curves have been used to refine the system properties, namely inclination i, planet-to-star radius ratio Rp/Rs, and the ratio between the semimajor axis and the stellar radius a/Rs. First analyses by Hartman et al. suggests the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also the literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21 ms. Thus, we can exclude TTV amplitudes of more than ∼1.5min

    Transit Timing Analysis in the HAT-P-32 system

    Get PDF
    We present the results of 45 transit observations obtained for the transiting exoplanet HAT-P-32b. The transits have been observed using several telescopes mainly throughout the YETI network. In 25 cases, complete transit light curves with a timing precision better than 1.41.4\:min have been obtained. These light curves have been used to refine the system properties, namely inclination ii, planet-to-star radius ratio Rp/RsR_\textrm{p}/R_\textrm{s}, and the ratio between the semimajor axis and the stellar radius a/Rsa/R_\textrm{s}. First analyses by Hartman et al. (2011) suggest the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21ms. Thus we can exclude TTV amplitudes of more than 1.5\sim1.5min.Comment: MNRAS accepted; 13 pages, 10 figure

    Multi-site campaign for transit timing variations of WASP-12 b: possible detection of a long-period signal of planetary origin

    Full text link
    The transiting planet WASP-12 b was identified as a potential target for transit timing studies because a departure from a linear ephemeris was reported in the literature. Such deviations could be caused by an additional planet in the system. We attempt to confirm the existence of claimed variations in transit timing and interpret its origin. We organised a multi-site campaign to observe transits by WASP-12 b in three observing seasons, using 0.5-2.6-metre telescopes. We obtained 61 transit light curves, many of them with sub-millimagnitude precision. The simultaneous analysis of the best-quality datasets allowed us to obtain refined system parameters, which agree with values reported in previous studies. The residuals versus a linear ephemeris reveal a possible periodic signal that may be approximated by a sinusoid with an amplitude of 0.00068+/-0.00013 d and period of 500+/-20 orbital periods of WASP-12 b. The joint analysis of timing data and published radial velocity measurements results in a two-planet model which better explains observations than single-planet scenarios. We hypothesize that WASP-12 b might be not the only planet in the system and there might be the additional 0.1 M_Jup body on a 3.6-d eccentric orbit. A dynamical analysis indicates that the proposed two-planet system is stable over long timescales.Comment: Accepted for publication in A&

    Untersuchung der Superflare-Aktivität bei sonnenartigen Sternen

    Get PDF
    During the last centuries historic observations revealed the magnetic activity of the sun. The large-scaled poloidal magnetic field reverses during a cycle of about 11 years. Especially during the maximum of particular cycles, dark sunspots can occur on the solar surface, which can store a huge amount of magnetic energy. If magnetic reconnection happens in the solar atmosphere, strong explosions and eruptions of material can be generated, which are called Flares. It is of special interest to study numerous stars with properties similar to the sun to draw meaningful statistics on flares in high energy ranges. In previous studies the first 120 d and 500 d of Kepler-data have been investigated (Maehara u. a., 2012; Shibayama u. a., 2013). It could be shown, that sun-like stars are able to create flares which are one to six orders of magnitude larger than the strongest events on the sun (called superflares). These results provide a challenge for theorists working on hydrodynamical dynamo-models of partly convective stars with spectral type similar to the sun. This thesis presents a data analysis for the full data-set of Kepler-observations (observation time span 3,4 yr). A special aim of this work is to estimate an absolute and relative superflare frequency for sun-like Kepler-stars and to compare these results with the sun. Results of a rough reinvestigation of several so far known sun-like superflare stars are presented which turn out the necessity for a more detailed analysis strategy. A key aspect of the improved data analysis is to minimize the false alarm probability. Using the sample of sun-like stars within the Kepler field of view, a relative superflare frequency of one event per 100 yr for superflares with energies up to 1034 erg was estimated which is more than one order of magnitude larger than in previous studies
    corecore