254 research outputs found

    The stress distribution in pin-loaded orthotropic plates

    Get PDF
    The performance of mechanically fastened composite joints was studied. Specially, a single-bolt connector was modeled as a pin-loaded, infinite plate. The model that was developed used two dimensional, complex variable, elasticity techniques combined with a boundary collocation procedure to produce solutions for the problem. Through iteration, the boundary conditions were satisfied and the stresses in the plate were calculated. Several graphite epoxy laminates were studied. In addition, parameters such as the pin modulus, coefficient of friction, and pin-plate clearance were varied. Conclusions drawn from this study indicate: (1) the material properties (i.e., laminate configuration) of the plate alter the stress state and, for highly orthotropic materials, the contact stress deviates greatly from the cosinusoidal distribution often assumed; (2) friction plays a major role in the distribution of stresses in the plate; (3) reversing the load direction also greatly effects the stress distribution in the plate; (4) clearance (or interference) fits change the contact angle and thus the location of the peak hoop stress; and (5) a rigid pin appears to be a good assumption for typical material systems

    International Veterinary Epilepsy Task Force recommendations for systematic sampling and processing of brains from epileptic dogs and cats

    Get PDF
    Traditionally, histological investigations of the epileptic brain are required to identify epileptogenic brain lesions, to evaluate the impact of seizure activity, to search for mechanisms of drug-resistance and to look for comorbidities. For many instances, however, neuropathological studies fail to add substantial data on patients with complete clinical work-up. This may be due to sparse training in epilepsy pathology and or due to lack of neuropathological guidelines for companion animals. The protocols introduced herein shall facilitate systematic sampling and processing of epileptic brains and therefore increase the efficacy, reliability and reproducibility of morphological studies in animals suffering from seizures. Brain dissection protocols of two neuropathological centres with research focus in epilepsy have been optimised with regards to their diagnostic yield and accuracy, their practicability and their feasibility concerning clinical research requirements. The recommended guidelines allow for easy, standardised and ubiquitous collection of brain regions, relevant for seizure generation. Tissues harvested the prescribed way will increase the diagnostic efficacy and provide reliable material for scientific investigations

    Methods for monitoring patient dose in dental radiology

    Full text link

    Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization

    Get PDF
    Interest in the utilization of bioactive plant compounds in foods has increased due to their biochemical activities (antioxidant, antimicrobial, etc.), and as alternatives in the reduction of the use of high concentrations of chemical substances. However, some of these additives are hydrophobic, thus being harder to disperse into the food matrix, which is generally water-based. A good alternative is the use of low concentrations of these compounds as nanoemulsions. The objective of the present study was to develop oil-in-water nanoemulsions containing dedo-de-moça pepper extract for food applications. Research in the development of these nanoemulsions was carried out using a high-speed homogenizer, followed by a high-pressure homogenizer. The influence of the following parameters was assessed: type and concentration of surfactants, hidrophilic-lipophilic balance, lipid/aqueous phase ratio, surfactant/oil ratio, pepper extract composition in nanoemulsion, and processing conditions. Nanoemulsions were evaluated by environmental (centrifugal and thermal) and storage stabilities, characterized by average droplet size and -potential measurements, color, interfacial tension, atomic force, and cryo-scanning electron microscopy. Those with average droplet size between 132 ± 2.0 and 145 ± 1.0 nm were developed depending on working pressure and number of cycles; -potential was around 36.71 ± 0.62 mV and the best nanoemulsion was stable to centrifugation and most of the thermal stresses. Droplets were characterized with cryo-scanning electron microscopy as being spherical, homogeneous, and stable, and remained stable when stored at 4 °C and room temperature for over 120 days. The pepper nanoemulsion, developed in the present study, has potential applications in the food industry.The first author gratefully acknowledges the CNPq and CAPES (National Council for Scientific and Technological Development, Program Science without Boarder) for the BSWE^ PhD (Process 236877/2012-1) fellowship, and CAPES for the national PhD fellowship. The last author acknowledges the São Paulo Research Foundation (FAPESP) Brazil, for the grant (CEPID-FoRC, 2013/07914-8).info:eu-repo/semantics/publishedVersio

    Biomarkers for CNS injury in CSF are elevated in COVID-19 and associated with neurological symptoms and disease severity

    Get PDF
    BACKGROUND: Neurological symptoms have been frequently reported in hospitalized patients with coronavirus disease 2019 (COVID-19) and biomarkers of CNS injury are reported to be increased in plasma but not extensively studied in CSF. This study examines CSF for biomarkers of CNS injury and other pathology in relation to neurological symptoms and disease severity in patients with neurological manifestations of COVID-19. METHODS: Nineteen patients with neurological symptoms and mild to critical COVID-19 were prospectively included. Extensive analysis of CSF, including measurement of biomarkers of CNS injury (neurofilament light chain protein (NfL) glial fibrillary acidic protein (GFAp) and total tau) was performed and related to neurological features and disease severity. RESULTS: Neurological symptoms included altered mental status (42%), headache (42%), central (21%) and peripheral weakness (32%). Two patients demonstrated minor pleocytosis and four patients had increased immunoglobulin G levels in CSF. Neuronal autoantibody testing using commercial tests was negative in all patients. Increased CSF levels of NfL, GFAp and total-tau protein were seen in 63%, 37%, and 16% of patients, respectively. Increased NfL correlated with disease severity, time in intensive care and level of consciousness. NfL in CSF was higher in patients with central neurological symptoms. CONCLUSION: Although limited by small sample size, our data suggest that levels of NfL, GFAp and total tau in CSF are commonly elevated in patients with COVID-19 with neurological symptoms. This is in contrast to the standard CSF work-up where pathological findings are scarce. NfL in particular, is associated with central neurological symptoms and disease severity

    Anti-SARS-CoV2 antibody responses in serum and cerebrospinal fluid of COVID-19 patients with neurological symptoms

    Get PDF
    Antibody responses to SARS-CoV-2 in serum and CSF from 16 COVID-19 patients with neurological symptoms were assessed using two independent methods. IgG specific for the virus spike protein was found in 81% of cases in serum and in 56% in CSF. SARS-CoV-2 IgG in CSF was observed in two cases with negative serology. Levels of IgG in both serum and CSF were associated with disease severity (p<0.05). All patients with elevated markers of CNS damage in CSF also had CSF antibodies (p=0.002), and CSF antibodies had the highest predictive value for neuronal damage markers of all tested clinical variables

    Anomalous size dependence of the coercivity of nanopatterned CrGeTe3

    Full text link
    The coercivity of single-domain magnetic nanoparticles typically decreases with the nanoparticle size and reaches zero when thermal fluctuations overcome the magnetic anisotropy. Here, we used SQUID-on-tip microscopy to investigate the coercivity of square-shaped CrGeTe3 nanoislands with a wide range of sizes and width-to-thickness aspect ratios. The results reveal an anomalous size-dependent coercivity, with smaller islands exhibiting higher coercivity. The nonconventional scaling of the coercivity in CrGeTe3 nanoislands was found to be inversely proportional to the island width and thickness (1/wd). This scaling implies that the nanoisland magnetic anisotropy is proportional to the perimeter rather than the volume, suggesting a magnetic edge state. In addition, we observe that 1600 nm wide islands display multi-domain structures with zero net remnant field, corresponding to the magnetic properties of pristine CrGeTe3 flakes. Our findings highlight the significant influence of edge states on the magnetic properties of CrGeTe3 and deepen our understanding of low-dimensional magnetic systemsH. Suderow and E. Herrera acknowledge the Spanish Research State Agency (PID2020-114071RB-I00, CEX2023001316-M, TED2021-130546B-I00), by the Comunidad de Madrid through program NANOMAGCOST-CM (program no. S2018/NMT-4321)

    Key research questions for implementation of artificial intelligence in capsule endoscopy

    Get PDF
    Background: Artificial intelligence (AI) is rapidly infiltrating multiple areas in medicine, with gastrointestinal endoscopy paving the way in both research and clinical applications. Multiple challenges associated with the incorporation of AI in endoscopy are being addressed in recent consensus documents. Objectives: In the current paper, we aimed to map future challenges and areas of research for the incorporation of AI in capsule endoscopy (CE) practice. Design: Modified three-round Delphi consensus online survey. Methods: The study design was based on a modified three-round Delphi consensus online survey distributed to a group of CE and AI experts. Round one aimed to map out key research statements and challenges for the implementation of AI in CE. All queries addressing the same questions were merged into a single issue. The second round aimed to rank all generated questions during round one and to identify the top-ranked statements with the highest total score. Finally, the third round aimed to redistribute and rescore the top-ranked statements. Results: Twenty-one (16 gastroenterologists and 5 data scientists) experts participated in the survey. In the first round, 48 statements divided into seven themes were generated. After scoring all statements and rescoring the top 12, the question of AI use for identification and grading of small bowel pathologies was scored the highest (mean score 9.15), correlation of AI and human expert reading-second (9.05), and real-life feasibility-third (9.0). Conclusion: In summary, our current study points out a roadmap for future challenges and research areas on our way to fully incorporating AI in CE reading

    Field-induced antiferromagnetic correlations in a nanopatterned van der waals ferromagnet: a potential artificial spin ice

    Full text link
    Nano-patterned magnetic materials have opened new venues for the investigation of strongly correlated phenomena including artificial spin-ice systems, geometric frustration, and magnetic monopoles, for technologically important applications such as reconfigurable ferromagnetism. With the advent of atomically thin 2D van der Waals (vdW) magnets, a pertinent question is whether such compounds could make their way into this realm where interactions can be tailored so that unconventional states of matter can be assessed. Here, it is shown that square islands of CrGeTe3 vdW ferromagnets distributed in a grid manifest antiferromagnetic correlations, essential to enable frustration resulting in an artificial spin-ice. By using a combination of SQUID-on-tip microscopy, focused ion beam lithography, and atomistic spin dynamic simulations, it is shown that a square array of CGT island as small as 150 × 150 × 60 nm3 have tunable dipole–dipole interactions, which can be precisely controlled by their lateral spacing. There is a crossover between non-interacting islands and significant inter-island anticorrelation depending on how they are spatially distributed allowing the creation of complex magnetic patterns not observable at the isolated flakes. These findings suggest that the cross-talk between the nano-patterned magnets can be explored in the generation of even more complex spin configurations where exotic interactions may be manipulated in an unprecedented wayThis work was supported by the European Research Council (ERC) Foundation grant No. 802952 and the Israel Science Foundation (ISF) Grant Nos. 645/23, 586/22, 862/19, 576/21. The international collaboration on this work was fostered by the EU-COST Action CA21144. H. Steinberg acknowledges funding provided by the DFG Priority program grant 443404566 and Israel Science Foundation (ISF) grant 861/19. O. Millo is grateful for support from the Academia Sinica \u2013 Hebrew University Research Program, the ISF grant no. 576/21, and the Harry de Jur Chair in Applied Science. S. Gazit acknowledges support from the ISF grant no. 586/22.\u00A0H. Suderow and E. Herrera acknowledge support from the Spanish State Research Agency (PID2023-150148OB-I00, CEX2023-001316-M, TED2021-130546B-I00) and the Comunidad de Madrid through the NANOMAGCOST-CM program (Program No.S2018/NMT-4321)
    corecore