226 research outputs found

    Concurrent Kleene Algebra: Free Model and Completeness

    Get PDF
    Concurrent Kleene Algebra (CKA) was introduced by Hoare, Moeller, Struth and Wehrman in 2009 as a framework to reason about concurrent programs. We prove that the axioms for CKA with bounded parallelism are complete for the semantics proposed in the original paper; consequently, these semantics are the free model for this fragment. This result settles a conjecture of Hoare and collaborators. Moreover, the techniques developed along the way are reusable; in particular, they allow us to establish pomset automata as an operational model for CKA.Comment: Version 2 includes an overview section that outlines the completeness proof, as well as some extra discussion of the interpolation lemma. It also includes better typography and a number of minor fixes. Version 3 incorporates the changes by comments from the anonymous referees at ESOP. Among other things, these include a worked example of computing the syntactic closure by han

    Field's Logic of Truth

    Get PDF
    Saving Truth from Paradox is a re-exciting development. The 70s and 80s were a time of excitement among people working on the semantic paradoxes. There were continual formal developments, with the constant hope that these results would yield deep insights. The enthusiasm wore off, however, as people became more cognizant of the disparity between what they had accomplished, impressive as it was, and what they had hoped to accomplish. They moved onto other problems that they hoped would prove more yielding. That, at least, was how it seemed to me, so I was delighted to see a dramatically new formal development that is likely to rekindle our enthusiasm

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Enhanced Graph Rewriting Systems for Complex Software Domain

    Get PDF
    International audienceMethodologies for correct by construction reconfigurations can efficiently solve consistency issues in dynamic software architecture. Graph-based models are appropriate for designing such architectures and methods. At the same time, they may be unfit to characterize a system from a non functional perspective. This stems from efficiency and applicability limitations in handling time-varying characteristics and their related dependencies. In order to lift these restrictions, an extension to graph rewriting systems is proposed herein. The suitability of this approach, as well as the restraints of currently available ones, are illustrated, analysed and experimentally evaluated with reference to a concrete example. This investigation demonstrates that the conceived solution can: (i) express any kind of algebraic dependencies between evolving requirements and properties; (ii) significantly ameliorate the efficiency and scalability of system modifications with respect to classic methodologies; (iii) provide an efficient access to attribute values; (iv) be fruitfully exploited in software management systems; (v) guarantee theoretical properties of a grammar, like its termination

    Multiple Conclusion Rules in Logics with the Disjunction Property

    Full text link
    We prove that for the intermediate logics with the disjunction property any basis of admissible rules can be reduced to a basis of admissible m-rules (multiple-conclusion rules), and every basis of admissible m-rules can be reduced to a basis of admissible rules. These results can be generalized to a broad class of logics including positive logic and its extensions, Johansson logic, normal extensions of S4, n-transitive logics and intuitionistic modal logics

    Soundness and completeness proofs by coinductive methods

    Get PDF
    We show how codatatypes can be employed to produce compact, high-level proofs of key results in logic: the soundness and completeness of proof systems for variations of first-order logic. For the classical completeness result, we first establish an abstract property of possibly infinite derivation trees. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems for various flavors of first-order logic. Soundness becomes interesting as soon as one allows infinite proofs of first-order formulas. This forms the subject of several cyclic proof systems for first-order logic augmented with inductive predicate definitions studied in the literature. All the discussed results are formalized using Isabelle/HOL’s recently introduced support for codatatypes and corecursion. The development illustrates some unique features of Isabelle/HOL’s new coinductive specification language such as nesting through non-free types and mixed recursion–corecursion

    Monoidal computer III: A coalgebraic view of computability and complexity

    Full text link
    Monoidal computer is a categorical model of intensional computation, where many different programs correspond to the same input-output behavior. The upshot of yet another model of computation is that a categorical formalism should provide a much needed high level language for theory of computation, flexible enough to allow abstracting away the low level implementation details when they are irrelevant, or taking them into account when they are genuinely needed. A salient feature of the approach through monoidal categories is the formal graphical language of string diagrams, which supports visual reasoning about programs and computations. In the present paper, we provide a coalgebraic characterization of monoidal computer. It turns out that the availability of interpreters and specializers, that make a monoidal category into a monoidal computer, is equivalent with the existence of a *universal state space*, that carries a weakly final state machine for any pair of input and output types. Being able to program state machines in monoidal computers allows us to represent Turing machines, to capture their execution, count their steps, as well as, e.g., the memory cells that they use. The coalgebraic view of monoidal computer thus provides a convenient diagrammatic language for studying computability and complexity.Comment: 34 pages, 24 figures; in this version: added the Appendi

    On Semantic Gamification

    Get PDF
    The purpose of this essay is to study the extent in which the semantics for different logical systems can be represented game theoretically. I will begin by considering different definitions of what it means to gamify a semantics, and show completeness and limitative results. In particular, I will argue that under a proper definition of gamification, all finitely algebraizable logics can be gamified, as well as some infinitely algebraizable ones (like Łukasiewicz) and some non-algebraizable (like intuitionistic and van Fraassen supervaluation logic)

    CD24 Is Not Required for Tumor Initiation and Growth in Murine Breast and Prostate Cancer Models

    Get PDF
    CD24 is a small, heavily glycosylated, GPI-linked membrane protein, whose expression has been associated with the tumorigenesis and progression of several types of cancer. Here, we studied the expression of CD24 in tumors of MMTV-PyMT, Apc1572/T+ and TRAMP genetic mouse models that spontaneously develop mammary or prostate carcinoma, respectively. We found that CD24 is expressed during tumor development in all three models. In MMTV-PyMT and Apc1572T/+ breast tumors, CD24 was strongly but heterogeneously expressed during early tumorigenesis, but decreased in more advanced stages, and accordingly was increased in poorly differentiated lesions compared with well differentiated lesions. In prostate tumors developing in TRAMP mice, CD24 expression was strong within hyperplastic lesions in comparison with non-hyperplastic regions, and heterogeneous CD24 expression was maintained in advanced prostate carcinomas. To investigate whether CD24 plays a functional role in tumorigenesis in these models, we crossed CD24 deficient mice with MMTV-PyMT, Apc1572T/+ and TRAMP mice, and assessed the influence of CD24 deficiency on tumor onset and tumor burden. We found that mice negative or positive for CD24 did not significantly differ in terms of tumor initiation and burden in the genetic tumor models tested, with the exception of Apc1572T/+ mice, in which lack of CD24 reduced the mammary tumor burden slightly but significantly. Together, our data suggest that while CD24 is distinctively expressed during the early development of murine mammary and prostate tumors, it is not essential for the formation of tumors developing in MMTV-PyMT, Apc1572T/+ and TRAMP mice
    corecore