685 research outputs found

    Reconstruction of regulatory networks through temporal enrichment profiling and its application to H1N1 influenza viral infection

    Get PDF
    BACKGROUND: H1N1 influenza viruses were responsible for the 1918 pandemic that caused millions of deaths worldwide and the 2009 pandemic that caused approximately twenty thousand deaths. The cellular response to such virus infections involves extensive genetic reprogramming resulting in an antiviral state that is critical to infection control. Identifying the underlying transcriptional network driving these changes, and how this program is altered by virally-encoded immune antagonists, is a fundamental challenge in systems immunology. RESULTS: Genome-wide gene expression patterns were measured in human monocyte-derived dendritic cells (DCs) infected in vitro with seasonal H1N1 influenza A/New Caledonia/20/1999. To provide a mechanistic explanation for the timing of gene expression changes over the first 12 hours post-infection, we developed a statistically rigorous enrichment approach integrating genome-wide expression kinetics and time-dependent promoter analysis. Our approach, TIme-Dependent Activity Linker (TIDAL), generates a regulatory network that connects transcription factors associated with each temporal phase of the response into a coherent linked cascade. TIDAL infers 12 transcription factors and 32 regulatory connections that drive the antiviral response to influenza. To demonstrate the generality of this approach, TIDAL was also used to generate a network for the DC response to measles infection. The software implementation of TIDAL is freely available at http://tsb.mssm.edu/primeportal/?q=tidal_prog. CONCLUSIONS: We apply TIDAL to reconstruct the transcriptional programs activated in monocyte-derived human dendritic cells in response to influenza and measles infections. The application of this time-centric network reconstruction method in each case produces a single transcriptional cascade that recapitulates the known biology of the response with high precision and recall, in addition to identifying potentially novel antiviral factors. The ability to reconstruct antiviral networks with TIDAL enables comparative analysis of antiviral responses, such as the differences between pandemic and seasonal influenza infections

    SPEDRE: a web server for estimating rate parameters for cell signaling dynamics in data-rich environments

    Get PDF
    Cell signaling pathways and metabolic networks are often modeled using ordinary differential equations (ODEs) to represent the production/consumption of molecular species over time. Regardless whether a model is built de novo or adapted from previous models, there is a need to estimate kinetic rate constants based on time-series experimental measurements of molecular abundance. For data-rich cases such as proteomic measurements of all species, spline-based parameter estimation algorithms have been developed to avoid solving all the ODEs explicitly. We report the development of a web server for a spline-based method. Systematic Parameter Estimation for Data-Rich Environments (SPEDRE) estimates reaction rates for biochemical networks. As input, it takes the connectivity of the network and the concentrations of the molecular species at discrete time points. SPEDRE is intended for large sparse networks, such as signaling cascades with many proteins but few reactions per protein. If data are available for all species in the network, it provides global coverage of the parameter space, at low resolution and with approximate accuracy. The output is an optimized value for each reaction rate parameter, accompanied by a range and bin plot. SPEDRE uses tools from COPASI for pre-processing and post-processing. SPEDRE is a free service at http://LTKLab.org/SPEDRE.Singapore-MIT Alliance (IUP R-154-001-348-646

    Visual performance and ocular abnormalities in deaf children and young adults: a literature review

    Get PDF
    Visual defects are common in deaf individuals. Refractive error and ocular motor abnormalities are frequently reported, with hyperopia, myopia, astigmatism and anomalies of binocular vision, all showing a greater prevalence in deaf individuals compared with the general population. Near visual function in deaf individuals has been relatively neglected in the literature to date. Comparisons between studies are problematic due to differences in methodology and population characteristics. Any untreated visual defect has the potential to impair the development of language, with consequences for education more generally, and there is a need to improve screening and treatments of deaf children. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd

    Optimality of mutation and selection in germinal centers

    Get PDF
    The population dynamics theory of B cells in a typical germinal center could play an important role in revealing how affinity maturation is achieved. However, the existing models encountered some conflicts with experiments. To resolve these conflicts, we present a coarse-grained model to calculate the B cell population development in affinity maturation, which allows a comprehensive analysis of its parameter space to look for optimal values of mutation rate, selection strength, and initial antibody-antigen binding level that maximize the affinity improvement. With these optimized parameters, the model is compatible with the experimental observations such as the ~100-fold affinity improvements, the number of mutations, the hypermutation rate, and the "all or none" phenomenon. Moreover, we study the reasons behind the optimal parameters. The optimal mutation rate, in agreement with the hypermutation rate in vivo, results from a tradeoff between accumulating enough beneficial mutations and avoiding too many deleterious or lethal mutations. The optimal selection strength evolves as a balance between the need for affinity improvement and the requirement to pass the population bottleneck. These findings point to the conclusion that germinal centers have been optimized by evolution to generate strong affinity antibodies effectively and rapidly. In addition, we study the enhancement of affinity improvement due to B cell migration between germinal centers. These results could enhance our understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio

    Detecting selection in immunoglobulin sequences

    Get PDF
    The ability to detect selection by analyzing mutation patterns in experimentally derived immunoglobulin (Ig) sequences is a critical part of many studies. Such techniques are useful not only for understanding the response to pathogens, but also to determine the role of antigen-driven selection in autoimmunity, B cell cancers and the diversification of pre-immune repertoires in certain species. Despite its importance, quantifying selection in experimentally derived sequences is fraught with difficulties. The necessary parameters for statistical tests (such as the expected frequency of replacement mutations in the absence of selection) are non-trivial to calculate, and results are not easily interpretable when analyzing more than a handful of sequences. We have developed a web server that implements our previously proposed Focused binomial test for detecting selection. Several features are integrated into the web site in order to facilitate analysis, including V(D)J germline segment identification with IMGT alignment, batch submission of sequences and integration of additional test statistics proposed by other groups. We also implement a Z-score-based statistic that increases the power of detecting selection while maintaining specificity, and further allows for the combined analysis of sequences from different germlines. The tool is freely available at http://clip.med.yale.edu/selection

    Impaired Host Response and the Presence of Acinetobacter baumannii in the Serum Microbiome of Type-II Diabetic Patients

    Get PDF
    Type II diabetes (T2D) affects over 10% of the US population and is a growing disease worldwide that manifests with numerous comorbidities and defects in inflammation. This dysbiotic host response allows for infection of the host by numerous microorganisms. In the course of T2D disease, individuals can develop chronic infections including foot ulcers and periodontitis, which lead to further complications and opportunistic infections in multiple body sites. In this study, we investigated the serum of healthy subjects and patients with T2D with (T2DP) or without periodontitis for both microbiome signatures in addition to cytokine profiles. Surprisingly, we detected the presence of Acinetobacter baumanii in the serum of 23% individuals with T2D/T2DP tested. In T2DP, IL-1β, TNF-α, MCP-1, IL-6, IL-8, and IFN-γ were significantly elevated in ABC-positive subjects. As an emerging pathogen, A. baumanii infection represents a risk for impaired inflammation and the development of comorbidities in subjects with T2D

    Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention.

    Get PDF
    The aim of this review was to quantify the global variation in childhood myopia prevalence over time taking account of demographic and study design factors. A systematic review identified population-based surveys with estimates of childhood myopia prevalence published by February 2015. Multilevel binomial logistic regression of log odds of myopia was used to examine the association with age, gender, urban versus rural setting and survey year, among populations of different ethnic origins, adjusting for study design factors. 143 published articles (42 countries, 374 349 subjects aged 1-18 years, 74 847 myopia cases) were included. Increase in myopia prevalence with age varied by ethnicity. East Asians showed the highest prevalence, reaching 69% (95% credible intervals (CrI) 61% to 77%) at 15 years of age (86% among Singaporean-Chinese). Blacks in Africa had the lowest prevalence; 5.5% at 15 years (95% CrI 3% to 9%). Time trends in myopia prevalence over the last decade were small in whites, increased by 23% in East Asians, with a weaker increase among South Asians. Children from urban environments have 2.6 times the odds of myopia compared with those from rural environments. In whites and East Asians sex differences emerge at about 9 years of age; by late adolescence girls are twice as likely as boys to be myopic. Marked ethnic differences in age-specific prevalence of myopia exist. Rapid increases in myopia prevalence over time, particularly in East Asians, combined with a universally higher risk of myopia in urban settings, suggest that environmental factors play an important role in myopia development, which may offer scope for prevention

    Identification of Subject-Specific Immunoglobulin Alleles From Expressed Repertoire Sequencing Data

    Get PDF
    The adaptive immune receptor repertoire (AIRR) contains information on an individuals' immune past, present and potential in the form of the evolving sequences that encode the B cell receptor (BCR) repertoire. AIRR sequencing (AIRR-seq) studies rely on databases of known BCR germline variable (V), diversity (D), and joining (J) genes to detect somatic mutations in AIRR-seq data via comparison to the best-aligning database alleles. However, it has been shown that these databases are far from complete, leading to systematic misidentification of mutated positions in subsets of sample sequences. We previously presented TIgGER, a computational method to identify subject-specific V gene genotypes, including the presence of novel V gene alleles, directly from AIRR-seq data. However, the original algorithm was unable to detect alleles that differed by more than 5 single nucleotide polymorphisms (SNPs) from a database allele. Here we present and apply an improved version of the TIgGER algorithm which can detect alleles that differ by any number of SNPs from the nearest database allele, and can construct subject-specific genotypes with minimal prior information. TIgGER predictions are validated both computationally (using a leave-one-out strategy) and experimentally (using genomic sequencing), resulting in the addition of three new immunoglobulin heavy chain V (IGHV) gene alleles to the IMGT repertoire. Finally, we develop a Bayesian strategy to provide a confidence estimate associated with genotype calls. All together, these methods allow for much higher accuracy in germline allele assignment, an essential step in AIRR-seq studies

    Icing: Large-scale inference of immunoglobulin clonotypes

    Get PDF
    Immunoglobulin (IG) clonotype identification is a fundamental open question in modern immunology. An accurate description of the IG repertoire is crucial to understand the variety within the immune system of an individual, potentially shedding light on the pathogenetic process. Intrinsic IG heterogeneity makes clonotype inference an extremely challenging task, both from a computational and a biological point of view. Here we present icing, a framework that allows to reconstruct clonal families also in case of highly mutated sequences. icing has a modular structure, and it is designed to be used with large next generation sequencing (NGS) datasets, a technology which allows the characterisation of large-scale IG repertoires. We extensively validated the framework with clustering performance metrics on the results in a simulated case. icing is implemented in Python, and it is publicly available under FreeBSD licence at https://github.com/slipguru/icing

    Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving

    Get PDF
    The poor efficacy of seasonal influenza virus vaccines is often attributed to pre-existing immunity interfering with the persistence and maturation of vaccine-induced B cell responses. We previously showed that a subset of vaccine-induced B cell lineages are recruited into germinal centers (GCs) following vaccination, suggesting that affinity maturation of these lineages against vaccine antigens can occur. However, it remains to be determined whether seasonal influenza vaccination stimulates additional evolution of vaccine-specific lineages, and previous work has found no significant increase in somatic hypermutation among influenza-binding lineages sampled from the blood following seasonal vaccination in humans. Here, we investigate this issue using a phylogenetic test of measurable immunoglobulin sequence evolution. We first validate this test through simulations and survey measurable evolution across multiple conditions. We find significant heterogeneity in measurable B cell evolution across conditions, with enrichment in primary response conditions such as HIV infection and early childhood development. We then show that measurable evolution following influenza vaccination is highly compartmentalized: while lineages in the blood are rarely measurably evolving following influenza vaccination, lineages containing GC B cells are frequently measurably evolving. Many of these lineages appear to derive from memory B cells. We conclude from these findings that seasonal influenza virus vaccination can stimulate additional evolution of responding B cell lineages, and imply that the poor efficacy of seasonal influenza vaccination is not due to a complete inhibition of vaccine-specific B cell evolution
    corecore