2,711 research outputs found

    Vector mesons in a relativistic point-form approach

    Full text link
    We apply the point form of relativistic quantum mechanics to develop a Poincare invariant coupled-channel formalism for two-particle systems interacting via one-particle exchange. This approach takes the exchange particle explicitly into account and leads to a generalized eigenvalue equation for the Bakamjian-Thomas type mass operator of the system. The coupling of the exchange particle is derived from quantum field theory. As an illustrative example we consider vector mesons within the chiral constituent quark model in which the hyperfine interaction between the confined quark-antiquark pair is generated by Goldstone-boson exchange. We study the effect of retardation in the Goldstone-boson exchange by comparing with the commonly used instantaneous approximation. As a nice physical feature we find that the problem of a too large ρ\rho-ω\omega splitting can nearly be avoided by taking the dynamics of the exchange meson explicitly into account.Comment: 14 pages, 1 figur

    Dropping cold quantum gases on Earth over long times and large distances

    Full text link
    We describe the non-relativistic time evolution of an ultra-cold degenerate quantum gas (bosons/fermions) falling in Earth's gravity during long times (10 sec) and over large distances (100 m). This models a drop tower experiment that is currently performed by the QUANTUS collaboration at ZARM (Bremen, Germany). Starting from the classical mechanics of the drop capsule and a single particle trapped within, we develop the quantum field theoretical description for this experimental situation in an inertial frame, the corotating frame of the Earth, as well as the comoving frame of the drop capsule. Suitable transformations eliminate non-inertial forces, provided all external potentials (trap, gravity) can be approximated with a second order Taylor expansion around the instantaneous trap center. This is an excellent assumption and the harmonic potential theorem applies. As an application, we study the quantum dynamics of a cigar-shaped Bose-Einstein condensate in the Gross-Pitaevskii mean-field approximation. Due to the instantaneous transformation to the rest-frame of the superfluid wave packet, the long-distance drop (100m) can be studied easily on a numerical grid.Comment: 18 pages latex, 5 eps figures, submitte

    Factors associated with first return to work and sick leave durations in workers with common mental disorders

    Get PDF
    Background: Associations are examined between socio-demographic, medical, work-related and organizational factors and the moment of first return to work (RTW) (within or after 6 weeks of sick leave) and total sick leave duration in sick leave spells due to common mental disorders. Methods: Data are derived from a Dutch database, build to provide reference data for sick leave duration for various medical conditions. The cases in this study were entered in 2004 and 2005 by specially trained occupational health physicians, based on the physician's assessment of medical and other factors. Odds ratios for first RTW and sick leave durations are calculated in logistic regression models. Results: Burnout, depression and anxiety disorder are associated with longer sick leave duration. Similar, but weaker associations were found for female sex, being a teacher, small company size and moderate or high psychosocial hazard. Distress is associated with shorter sick leave duration. Medical factors, psychosocial hazard and company size are also and analogously associated with first RTW. Part-time work is associated with delayed first RTW. The strength of the associations varies for various factors and for different sick leave durations. Conclusion: The medical diagnosis has a strong relation with the moment of first RTW and the duration of sick leave spells in mental disorders, but the influence of demographic and work-related factors should not be neglected

    Faddeev approach to confined three-quark problems

    Get PDF
    We propose a method that allows for the efficient solution of the three-body Faddeev equations in the presence of infinitely rising confinement interactions. Such a method is useful in calculations of nonrelativistic and especially semirelativistic constituent quark models. The convergence of the partial wave series is accelerated and possible spurious contributions in the Faddeev components are avoided. We demonstrate how the method works with the example of the Goldstone-boson-exchange chiral quark model for baryons.Comment: 6 page

    Multiplicity, Invariants and Tensor Product Decomposition of Tame Representations of U(\infty)

    Full text link
    The structure of r-fold tensor products of irreducible tame representations of the inductive limit U(\infty) of unitary groups U(n) are are described, versions of contragredient representations and invariants are realized on Bargmann-Segal-Fock spaces.Comment: 48 pages, LaTeX file, to appear in J. Math. Phy

    Stimulus - response curves of a neuronal model for noisy subthreshold oscillations and related spike generation

    Full text link
    We investigate the stimulus-dependent tuning properties of a noisy ionic conductance model for intrinsic subthreshold oscillations in membrane potential and associated spike generation. On depolarization by an applied current, the model exhibits subthreshold oscillatory activity with occasional spike generation when oscillations reach the spike threshold. We consider how the amount of applied current, the noise intensity, variation of maximum conductance values and scaling to different temperature ranges alter the responses of the model with respect to voltage traces, interspike intervals and their statistics and the mean spike frequency curves. We demonstrate that subthreshold oscillatory neurons in the presence of noise can sensitively and also selectively be tuned by stimulus-dependent variation of model parameters.Comment: 19 pages, 7 figure

    Potential tumour doubling time: determination of Tpot for various canine and feline tumours

    Get PDF
    Spontaneous tumours in dogs and cats are an excellent model for clinical human research, such as in developing proton conformation radiotherapy for humans. The kinetics of tumour cells can be used effectively to predict prognosis and response to therapy in patients with tumours. Knowledge of the kinetic parameters in these tumours is therefore important. In the present study the kinetic parameters evaluated included the labelling index (LI), relative movement (RM), mitotic index (MI), and potential doubling time (Tpot). These parameters were determined using in vivo labelling with bromodeoxyuridine, flow cytometry and histological preparation. Samples were obtained and evaluated from 72 dogs and 20 cats, presenting as patients in our clinic. Within the groups of epithelial and mesenchymal tumours from dogs and cats, the kinetic parameters LI, RM and MI were compared with Tpot. Significant correlations were observed for the comparison Tpot and LI. No correlation was found between Tpot and R
    corecore