2,175 research outputs found
Movements of molecular motors: Ratchets, random walks and traffic phenomena
Processive molecular motors which drive the traffic of organelles in cells
move in a directed way along cytoskeletal filaments. On large time scales, they
perform motor walks, i.e., peculiar random walks which arise from the repeated
unbinding from and rebinding to filaments. Unbound motors perform Brownian
motion in the surrounding fluid. In addition, the traffic of molecular motors
exhibits many cooperative phenomena. In particular, it faces similar problems
as the traffic on streets such as the occurrence of traffic jams and the
coordination of (two-way) traffic. These issues are studied here theoretically
using lattice models.Comment: latex, uses elsart.cls and phyeauth.cls (included), 10 pages, 6
figures, to appear in the proceedings of FQMT'04, Pragu
Phase transitions in systems with two species of molecular motors
Systems with two species of active molecular motors moving on (cytoskeletal)
filaments into opposite directions are studied theoretically using driven
lattice gas models. The motors can unbind from and rebind to the filaments. Two
motors are more likely to bind on adjacent filament sites if they belong to the
same species. These systems exhibit (i) Continuous phase transitions towards
states with spontaneously broken symmetry, where one motor species is largely
excluded from the filament, (ii) Hysteresis of the total current upon varying
the relative concentrations of the two motor species, and (iii) Coexistence of
traffic lanes with opposite directionality in multi-filament systems. These
theoretical predictions should be experimentally accessible.Comment: 7 pages, 4 figures, epl style (.cls-file included), to appear in
Europhys. Lett. (http://www.edpsciences.org/epl
The Preference for Round Number Prices
This study determines if a preference for round prices exists in the wheat market and how wheat sales react to price movements around whole dollar amounts. The results show round prices are slightly more prevalent than non-round prices and that transactions increase when price moves above a whole dollar amount.Demand and Price Analysis,
Transport by molecular motors in the presence of static defects
The transport by molecular motors along cytoskeletal filaments is studied
theoretically in the presence of static defects. The movements of single motors
are described as biased random walks along the filament as well as binding to
and unbinding from the filament. Three basic types of defects are
distinguished, which differ from normal filament sites only in one of the
motors' transition probabilities. Both stepping defects with a reduced
probability for forward steps and unbinding defects with an increased
probability for motor unbinding strongly reduce the velocities and the run
lengths of the motors with increasing defect density. For transport by single
motors, binding defects with a reduced probability for motor binding have a
relatively small effect on the transport properties. For cargo transport by
motors teams, binding defects also change the effective unbinding rate of the
cargo particles and are expected to have a stronger effect.Comment: 20 pages, latex, 7 figures, 1 tabl
Deterministic and stochastic descriptions of gene expression dynamics
A key goal of systems biology is the predictive mathematical description of
gene regulatory circuits. Different approaches are used such as deterministic
and stochastic models, models that describe cell growth and division explicitly
or implicitly etc. Here we consider simple systems of unregulated
(constitutive) gene expression and compare different mathematical descriptions
systematically to obtain insight into the errors that are introduced by various
common approximations such as describing cell growth and division by an
effective protein degradation term. In particular, we show that the population
average of protein content of a cell exhibits a subtle dependence on the
dynamics of growth and division, the specific model for volume growth and the
age structure of the population. Nevertheless, the error made by models with
implicit cell growth and division is quite small. Furthermore, we compare
various models that are partially stochastic to investigate the impact of
different sources of (intrinsic) noise. This comparison indicates that
different sources of noise (protein synthesis, partitioning in cell division)
contribute comparable amounts of noise if protein synthesis is not or only
weakly bursty. If protein synthesis is very bursty, the burstiness is the
dominant noise source, independent of other details of the model. Finally, we
discuss two sources of extrinsic noise: cell-to-cell variations in protein
content due to cells being at different stages in the division cycles, which we
show to be small (for the protein concentration and, surprisingly, also for the
protein copy number per cell) and fluctuations in the growth rate, which can
have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012
Determining Returns to Storage: USDA Data versus Micro Level Data
USDA data are commonly used to determine producers' returns to storage. Aggregating data may result in a loss of information, leading to underestimated returns. This study compares USDA and elevator data from Oklahoma to determine how much USDA data underestimates returns. Results indicate USDA data only slightly underestimate returns to storage.Research Methods/ Statistical Methods,
3D System Integration for high density Interconnects
3D-Integration is a promising technology towards higher interconnect densities and shorter wiring lengths between multiple chip stacks, thus achieving a very high performance level combined with low power consumption. This technology also offers the possibility to build up systems with high complexity by combining devices of different technologies. The fundamental processing steps will be described, as well as appropriate handling concepts and first electrical results of realized 3D-integrated stacks
Traffic by multiple species of molecular motors
We study the traffic of two types of molecular motors using the two-species
symmetric simple exclusion process (ASEP) with periodic boundary conditions and
with attachment and detachment of particles. We determine characteristic
properties such as motor densities and currents by simulations and analytical
calculations. For motors with different unbinding probabilities, mean field
theory gives the correct bound density and total current of the motors, as
shown by numerical simulations. For motors differing in their stepping
probabilities, the particle-hole symmetry of the current-density relationship
is broken and mean field theory fails drastically. The total motor current
exhibits exponential finite-size scaling, which we use to extrapolate the total
current to the thermodynamic limit. Finally, we also study the motion of a
single motor in the background of many non-moving motors.Comment: 23 pages, 6 figures, late
Traffic of Molecular Motors
Molecular motors perform active movements along cytoskeletal filaments and
drive the traffic of organelles and other cargo particles in cells. In contrast
to the macroscopic traffic of cars, however, the traffic of molecular motors is
characterized by a finite walking distance (or run length) after which a motor
unbinds from the filament along which it moves. Unbound motors perform Brownian
motion in the surrounding aqueous solution until they rebind to a filament. We
use variants of driven lattice gas models to describe the interplay of their
active movements, the unbound diffusion, and the binding/unbinding dynamics. If
the motor concentration is large, motor-motor interactions become important and
lead to a variety of cooperative traffic phenomena such as traffic jams on the
filaments, boundary-induced phase transitions, and spontaneous symmetry
breaking in systems with two species of motors. If the filament is surrounded
by a large reservoir of motors, the jam length, i.e., the extension of the
traffic jams is of the order of the walking distance. Much longer jams can be
found in confined geometries such as tube-like compartments.Comment: 10 pages, latex, uses Springer styles (included), to appear in the
Proceedings of "Traffic and Granular Flow 2005
Walks of molecular motors in two and three dimensions
Molecular motors interacting with cytoskeletal filaments undergo peculiar
random walks consisting of alternating sequences of directed movements along
the filaments and diffusive motion in the surrounding solution. An ensemble of
motors is studied which interacts with a single filament in two and three
dimensions. The time evolution of the probability distribution for the bound
and unbound motors is determined analytically. The diffusion of the motors is
strongly enhanced parallel to the filament. The analytical expressions are in
excellent agreement with the results of Monte Carlo simulations.Comment: 7 pages, 2 figures, to be published in Europhys. Let
- …
