19 research outputs found

    Defining the Molecular Character of the Developing and Adult Kidney Podocyte

    Get PDF
    BACKGROUND: The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. METHODOLOGY/PRINCIPAL FINDINGS: In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. CONCLUSIONS/SIGNIFICANCE: The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells

    Aberrant expression of c-Jun in glioblastoma by internal ribosome entry site (IRES)-mediated translational activation

    No full text
    Although the protooncogene c-Jun plays a critical role in cell proliferation, cell death, and malignant transformation, DNA microarray screens have identified only a few human cancer types with aberrant expression of c-Jun. Here, we showthat c-Jun accumulation is robustly elevated in human glioblastoma and that this increase contributes to the malignant properties of the cells. Most importantly, the increase in c-Jun protein accumulation occurs with no corresponding increase in c-Jun mRNA or the half-life of the c-Jun protein but, rather, in the translatability of the transcript. The c-Jun 5' UTR harbors a potent internal ribosomal entry site (IRES) with a virus-like IRES domain that directs cap-independent translation in glioblastoma cells. Accumulation of c-Jun is not dependent on MAPK activity but can be stimulated by a cytoskeleton-dependent pathway. Our findings provide evidence that human c-Jun is an IRES-containing cellular transcript that contributes to cancer development through translational activation. This previously undescribed mechanism of c-Jun regulation might also be relevant to other types of human cancer and offers unique potential targets for therapy

    Abnormal neural hierarchy in processing of verbal information in patients with schizophrenia

    No full text
    Previous research indicates abnormal comprehension of verbal information in patients with schizophrenia. Yet the neural mechanism underlying the breakdown of verbal information processing in schizophrenia is poorly understood. Imaging studies in healthy populations have shown a network of brain areas involved in hierarchical processing of verbal information over time. Here, we identified critical aspects of this hierarchy, examining patients with schizophrenia. Using functional magnetic resonance imaging, we examined various levels of information comprehension elicited by naturally presented verbal stimuli; from a set of randomly shuffled words to an intact story. Specifically, patients with first episode schizophrenia (N=15), their non-manifesting siblings (N=14) and healthy controls (N=15) listened to a narrated story and randomly scrambled versions of it. To quantify the degree of dissimilarity between the groups, we adopted an inter-subject correlation (inter-SC) approach, which estimates differences in synchronization of neural responses within and between groups. The temporal topography found in healthy and siblings groups were consistent with our previous findings – high synchronization in responses from early sensory toward high order perceptual and cognitive areas. In patients with schizophrenia, stimuli with short and intermediate temporal scales evoked a typical pattern of reliable responses, whereas story condition (long temporal scale) revealed robust and widespread disruption of the inter-SCs. In addition, the more similar the neural activity of patients with schizophrenia was to the average response in the healthy group, the less severe the positive symptoms of the patients. Our findings suggest that system-level neural indication of abnormal verbal information processing in schizophrenia reflects disease manifestations. Keywords: Information processing, Schizophrenia, Siblings, Narrated story, fMR

    Loss of E-Cadherin–mediated Cell–Cell Contacts Activates a Novel Mechanism for Up-Regulation of the Proto-Oncogene c-Jun

    No full text
    Loss of E-cadherin–mediated cell–cell contacts can elicit a signaling pathway that leads to acquisition of an invasive phenotype. Here, we show that at the receiving end of this pathway is the proto-oncogene c-Jun, a member of the activator protein-1 family of transcription factors that play a key role in stimulation of cell proliferation and tumor promotion. Cell separation or abrogation of E-cadherin–mediated cell–cell contacts both cause a dramatic increase in accumulation of the c-Jun protein. Unlike growth factors that enhance the expression of c-Jun by activating the transcription of the c-jun gene, the cell contact-dependent increase in c-Jun accumulation is not accompanied by a corresponding increase in c-Jun mRNA or c-Jun protein stability but rather in the translatability of the c-Jun transcript. Consistently, the increase in c-Jun accumulation is not dependent on activation of the mitogen-activated protein kinase or β-catenin pathways but is mediated by signals triggered by the restructured cytoskeleton. Depolymerization of the cytoskeleton can mimic the effect of cell separation and cause a dramatic increase in c-Jun accumulation, whereas Taxol inhibits the cell contact-dependent increase. This novel mechanism of c-Jun regulation seems to underlie the robust overexpression of c-Jun in tumor cells of patients with colon carcinoma

    Acute and chronic cadmium exposure promotes E-cadherin degradation in MCF7 breast cancer cells.

    No full text
    Cadmium is an environmental carcinogen that usually enters the body at minute concentrations through diet or cigarette smoke and bioaccumulates in soft tissues. In past studies, cadmium has been shown to contribute to the development of more aggressive cancer phenotypes including increased cell migration and invasion. This study aims to determine if cadmium exposure-both acute and chronic-contributes to breast cancer progression by interfering with the normal functional relationship between E-cadherin and β-catenin. An MCF7 breast cancer cell line (MCF7-Cd) chronically exposed to 10(-7)  M CdCl2 was previously developed and used as a model system to study chronic exposures, whereas parental MCF7 cells exposed to 10(-6)  M CdCl2 for short periods of time were used to study acute exposures. Cadmium exposure of MCF7 cells led to the degradation of the E-cadherin protein via the ubiquitination pathway. This resulted in fewer E-cadherin/β-catenin complexes and the relocation of active β-catenin to the nucleus, where it interacted with transcription factor TCF-4 to modulate gene expression. Interestingly, only cells chronically exposed to cadmium showed a significant decrease in the localization of β-catenin to the plasma membrane and an increased distance between cells. Our data suggest that cadmium exposure promotes breast cancer progression by (1) down-regulating E-cadherin, thus decreasing the number of E-cadherin/β-catenin adhesion complexes, and (2) enhancing the nuclear translocation of β-catenin to increase expression of cancer-promoting proteins (i.e., c-Jun and cyclin D1)
    corecore