268 research outputs found

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Evidence of space–time clustering of childhood acute lymphoblastic leukaemia in Sweden

    Get PDF
    We have examined 645 recorded cases of childhood acute lymphatic leukaemia (ALL) in Sweden during 1973–89 to identify space–time clustering by using the close-pair method of Knox. The records included date of birth and of diagnosis as well as addresses at birth and at diagnosis. There was a significant excess of case pairs close in date of birth and place of birth in the 5- to 15-year age group. © 1999 Cancer Research Campaig

    Risk estimates of recurrent congenital anomalies in the UK: a population-based register study

    Get PDF
    BACKGROUND: Recurrence risks for familial congenital anomalies in successive pregnancies are known, but this information for major structural anomalies is lacking. We estimated the absolute and relative risks of recurrent congenital anomaly in the second pregnancy for women with a history of a congenital anomaly in the first pregnancy; for all major anomaly groups and subtypes. METHODS: Population-based register data on 18,605 singleton pregnancies affected by major congenital anomaly occurring in 872,493 singleton stillbirths, live births and terminations of pregnancy for fetal anomaly were obtained from the Northern Congenital Abnormality Survey, North of England, UK, for 1985-2010. Absolute risks (ARs) and relative risks (RRs) for recurrent congenital anomaly (overall, from a similar group, from a dissimilar group) in the second pregnancy were estimated by history of congenital anomaly (overall, by group, by subtype) in the first pregnancy. RESULTS: The estimated prevalences of congenital anomaly in first and second pregnancies were 276 (95% CI 270-281) and 163 (95% CI 159-168) per 10,000 respectively. For women whose first pregnancy was affected by congenital anomaly, the AR of recurrent congenital anomaly in the second pregnancy was 408 (95% CI 365-456) per 10,000; 2.5 (95% CI 2.3-2.8, p<0.0001) times higher than for those with unaffected first pregnancies. For similar anomalies, the recurrence risk was considerably elevated (RR=23.8, 95% CI 19.6-27.9, P<0.0001) while for dissimilar anomalies the increase was more modest (RR=1.4, 95% CI 1.2-1.6, P=0.001), although the ARs for both were 2%. CONCLUSIONS: Absolute recurrence risks varied between 1 in 20 and 1 in 30 for most major anomaly groups. At pre-conception and antenatal counselling, women whose first pregnancy was affected by a congenital anomaly and who are planning a further pregnancy may find it reassuring that despite high relative risks, the absolute recurrence risk is relatively low

    Why Can't Rodents Vomit? A Comparative Behavioral, Anatomical, and Physiological Study

    Get PDF
    The vomiting (emetic) reflex is documented in numerous mammalian species, including primates and carnivores, yet laboratory rats and mice appear to lack this response. It is unclear whether these rodents do not vomit because of anatomical constraints (e.g., a relatively long abdominal esophagus) or lack of key neural circuits. Moreover, it is unknown whether laboratory rodents are representative of Rodentia with regards to this reflex. Here we conducted behavioral testing of members of all three major groups of Rodentia; mouse-related (rat, mouse, vole, beaver), Ctenohystrica (guinea pig, nutria), and squirrel-related (mountain beaver) species. Prototypical emetic agents, apomorphine (sc), veratrine (sc), and copper sulfate (ig), failed to produce either retching or vomiting in these species (although other behavioral effects, e.g., locomotion, were noted). These rodents also had anatomical constraints, which could limit the efficiency of vomiting should it be attempted, including reduced muscularity of the diaphragm and stomach geometry that is not well structured for moving contents towards the esophagus compared to species that can vomit (cat, ferret, and musk shrew). Lastly, an in situ brainstem preparation was used to make sensitive measures of mouth, esophagus, and shoulder muscular movements, and phrenic nerve activity-key features of emetic episodes. Laboratory mice and rats failed to display any of the common coordinated actions of these indices after typical emetic stimulation (resiniferatoxin and vagal afferent stimulation) compared to musk shrews. Overall the results suggest that the inability to vomit is a general property of Rodentia and that an absent brainstem neurological component is the most likely cause. The implications of these findings for the utility of rodents as models in the area of emesis research are discussed. © 2013 Horn et al

    Space-time clustering analyses of childhood acute lymphoblastic leukaemia by immunophenotype

    Get PDF
    Space-time clustering analyses of acute lymphoblastic leukaemia in children, by immunophenotype, were carried out using a population-based registry. Significant evidence was found of space-time clustering for cases of the precursor B-cell sub-type, in the childhood peak, based on time and location at birth

    Radon and childhood cancer

    Get PDF
    British Journal of Cancer (2002) 87, 1336–1337. doi:10.1038/sj.bjc.6600671 www.bjcancer.co

    The health care information directive

    Get PDF
    BACKGROUND: Developments in information technology promise to revolutionise the delivery of health care by providing access to data in a timely and efficient way. Information technology also raises several important concerns about the confidentiality and privacy of health data. New and existing legislation in Europe and North America may make access to patient level data difficult with consequent impact on research and health surveillance. Although research is being conducted on technical solutions to protect the privacy of personal health information, there is very little research on ways to improve individuals power over their health information. This paper proposes a health care information directive, analogous to an advance directive, to facilitate choices regarding health information disclosure. RESULTS AND DISCUSSION: A health care information directive is described which creates a decision matrix that combines the ethical appropriateness of the use of personal health information with the sensitivity of the data. It creates a range of possibilities with in which individuals can choose to contribute health information with or without consent, or not to contribute information at all. CONCLUSION: The health care information directive may increase individuals understanding of the uses of health information and increase their willingness to contribute certain kinds of health information. Further refinement and evaluation of the directive is required

    An infectious aetiology for childhood brain tumours? Evidence from space–time clustering and seasonality analyses

    Get PDF
    To investigate whether infections or other environmental exposures may be involved in the aetiology of childhood central nervous system tumours, we have analysed for space–time clustering and seasonality using population-based data from the North West of England for the period 1954 to 1998. Knox tests for space–time interactions between cases were applied with fixed thresholds of close in space, <5 km, and close in time, <1 year apart. Addresses at birth and diagnosis were used. Tests were repeated replacing geographical distance with distance to the Nth nearest neighbour. N was chosen such that the mean distance was 5 km. Data were also examined by a second order procedure based on K-functions. Tests for heterogeneity and Edwards' test for sinusoidal variation were applied to examine changes of incidence with month of birth or diagnosis. There was strong evidence of space–time clustering, particularly involving cases of astrocytoma and ependymoma. Analyses of seasonal variation showed excesses of cases born in the late Autumn or Winter. Results are consistent with a role for infections in a proportion of cases from these diagnostic groups. Further studies are needed to identify putative infectious agents
    corecore